Skip to main content
Log in

Simplified wave models applicability to shallow mud flows modeled as power-law fluids

  • Special topics from the 35th IAHR World Congress
  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Simplified wave models — such as kinematic, diffusion and quasi-steady — are widely employed as a convenient replacement of the full dynamic one in the analysis of unsteady open-channel flows, and especially for flood routing. While their use may guarantee a significant reduction of the computational effort, it is mandatory to define the conditions in which they may be confidently applied. The present paper investigates the applicability conditions of the kinematic, diffusion and quasisteady dynamic shallow wave models for mud flows of power-law fluids. The power-law model describes in an adequate and convenient way fluids that at low shear rates fluids do not posses yield stress, such as clay or kaolin suspensions, which are frequently encountered in Chinese rivers. In the framework of a linear analysis, the propagation characteristics of a periodic perturbation of an initial steady uniform flow predicted by the simplified models are compared with those of the full dynamic one. Based on this comparison, applicability criteria for the different wave approximations for mud flood of power-law fluids are derived. The presented results provide guidelines for selecting the appropriate approximation for a given flow problem, and therefore they may represent a useful tool for engineering predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaouche M, Djema A, Bourdache L (2009) A modified Shkadov’s model for thin film flow of a power law fluid over an inclined surface. Comptes Rendus Mecanique 337(1): 48–52. DOI: 10.1016/j.crme.2009.01.002

    Article  Google Scholar 

  • Arattano M, Savage WZ (1994) Modelling debris flow as kinematic waves. Bulletin of Engineering Geology and the Environment 49(1): 3–13. DOI: 10.1007/BF02594995

    Google Scholar 

  • Coussot P (1994) Steady, laminar, flow of concentrated mud suspensions in open channel. Journal of Hydraulic Research 32(4): 535–559. DOI: 10.1080/00221686.1994.9728354

    Article  Google Scholar 

  • Carreau PJ, DeKee D, Daroux M (1979) An analysis of the viscous behavior of polymeric solutions. The Canadian Journal of Chemical Engineering 57: 135–140. DOI: 10.1002/cjce.5450570202

    Article  Google Scholar 

  • Coussot P (1997) Mudflow rheology and dynamics. Balkema, Rotterdam.

    Google Scholar 

  • Dandapat BS, Mukhopadhyay A (2001) Waves on a film of power-law fluid flowing down an inclined plane at moderate Reynolds number. Fluid Dynamics Research 29: 199–220. DOI: 10.1016/S0169-5983(01)00024-7

    Article  Google Scholar 

  • Dent JD, Lang TE (1983) A biviscous modified Bingham model of snow avalanche motion. Annals Glaciology 4: 42–46.

    Google Scholar 

  • Di Cristo C, Iervolino M, Vacca A, Zanuttigh B (2009) Roll waves prediction in dense granular flow. Journal of Hydrology 377(1–2): 50–58. DOI: 10.1016/j.jhydrol.2009.08.008

    Article  Google Scholar 

  • Di Cristo C, Iervolino M, Vacca A (2012) Green’s Function of the Linearized Saint-Venant Equations in Laminar and Turbulent Flows. Acta Geophysica 60(1): 173–190. DOI: 10.2478/s11600-011-0039-8

    Article  Google Scholar 

  • Di Cristo C, Iervolino M, Vacca A (2013a) Waves dynamics in a linearized mud-flow shallow model. Applied Mathematical Sciences 7(8): 377–393.

    Google Scholar 

  • Di Cristo C, Iervolino M, Vacca A (2013b) Boundary conditions effect on linearized mud-flow shallow model. Acta Geophysica 61(3): 649–667. DOI: 10.2478/s11600-013-0108-2

    Article  Google Scholar 

  • Di Cristo C, Iervolino M, Vacca A (2013c) On the applicability of minimum channel length criterion for roll-waves in mudflows. Journal of Hydrology and Hydromechanics 61(4): 286–292. DOI: 10.2478/johh-2013-0036

    Article  Google Scholar 

  • Di Cristo C, Iervolino M, Vacca A (2013d) Gravity-driven flow of a shear-thinning power-law fluid over a permeable plane. Applied Mathematical Sciences 7(33): 1623–1641.

    Google Scholar 

  • Di Cristo C, Iervolino M, Vacca A (2014) Applicability of Kinematic, Diffusion and Quasi-Steady Dynamic Wave Models to Shallow Mud Flows. Journal of Hydrologic Engineering 19(5):956–965. DOI: 10.1061/(ASCE)HE.1943-5584.0000881

    Article  Google Scholar 

  • Fernandez-Nieto ED, Noble P, Vila JP (2010) Shallow water equations for non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics 165: 712–732. DOI: 10.1016/j.jnnfm.2010.03.008

    Article  Google Scholar 

  • Ferrick MG (1985). Analysis of river wave types. Water Resources Research 21(2): 209–220. DOI: 10.1029/WR021i002p00209

    Article  Google Scholar 

  • Forterre Y, Pouliquen O (2003) Long-surface wave instability in dense granular flows. Journal of Fluid Mechanics 486: 21–50. DOI: 10.1017/S0022112003004555

    Article  Google Scholar 

  • Greco M, Iervolino M, Leopardi A, et al. (2012) A two-phase model for fast geomorphic shallow flows. International Journal of Sediment Research 27(4): 409–425. DOI: 10.1016/S1001-6279(13)60001-3

    Article  Google Scholar 

  • Huang X, Garcia MH (1997) A perturbation solution for Binghamplastic mudflows. Journal of Hydraulic Engineering 123(11): 986–994. DOI: 10.1061/(ASCE)0733-9429(1997)123:11(986)

    Article  Google Scholar 

  • Huang X, Garcia MH (1998) A Herschel-Bulkley model for mud flow down a slope. Journal of Fluid Mechanics 374: 305–333. DOI: 10.1017/S0022112098002845

    Article  Google Scholar 

  • Hwang CC, Chen JL, Wang JS, et al. (1994) Linear stability of power law liquid film flowing down an inclined plane. Journal of Physics D: Applied Physics 27(11): 2297–2301. DOI: 10.1088/0022-3727/27/11/008

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Reviews of Geophysics 35(3): 245–296. DOI: 10.1029/97RG00426

    Article  Google Scholar 

  • Liu KF, Mei CC (1989) Slow spreading of a sheet of Bingham fluid on an inclined plane. Journal of Fluid Mechanics 207: 505–529. DOI: 10.1017/S0022112089002685

    Article  Google Scholar 

  • Liu KF, Mei CC (1994) Roll waves on a layer of a muddy fluid down a gentle slope - a Bingham model. Physics of Fluids 6(8): 2577–2590. DOI: 10.1063/1.868148

    Article  Google Scholar 

  • Miladinova S, Lebon G, Toshev E (2004) Thin-film flow of a power-law liquid falling down an inclined plate. Journal of Non-Newtonian Fluid Mechanics 122: 69–78. DOI: 10.1016/j. jnnfm.2004.01.021

    Article  Google Scholar 

  • Moramarco T, Singh VP (2002) Accuracy of kinematic wave and diffusion wave for spatially-varying rainfall excess over a plane. Hydrolog. Process. 16: 3419–3435. DOI: 10.1002/hyp.1108

    Article  Google Scholar 

  • Moramarco T, Pandolfo C, Singh VP (2008) Accuracy of Kinematic Wave and Diffusion Wave Approximations for Flood Routing. I: Steady Analysis. Journal of Hydrologic Engineering 13(11): 1078–1088. DOI: 10.1061/(ASCE)1084-0699(2008)13:11(1078)

    Article  Google Scholar 

  • Morris EM, Woolhiser DA (1980) Unsteady one-dimensional flow over a plane: Partial equilibrium and recession hydrographs. Water Resources Research 16(2): 355–360.

    Article  Google Scholar 

  • Moussa R, Boequillon C (1996) Criteria for the choice of flood routing methods in natural channels. Journal of Hydrology 186(1–4): 1–30. DOI: 10.1016/S0022-1694(96)03045-4

    Article  Google Scholar 

  • Ng C, Mei CC (1994) Roll waves on a shallow layer of mud modeled as a power-law fluid. Journal of Fluid Mechanics 263(1): 151–184. DOI: 10.1017/S0022112094004064

    Article  Google Scholar 

  • O’Brien JS, Julien PY (1988) Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering 114(8): 877–887. DOI: 10.1061/(ASCE)0733-9429(1988)114:8(877)

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering 119(2): 244–261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)

    Article  Google Scholar 

  • Pascal JP (2006) Instability of power-law fluid flow down a porous incline. Journal of Non-Newtonian Fluid Mechanics 133(2–3): 109–120. DOI: 10.1016/j.jnnfm.2005.11.007

    Article  Google Scholar 

  • Pascal JP, D’Alessio SJD (2007) Instability of power-law fluid flows down an incline subjected to wind stress. Applied Mathematical Modelling 31(7): 1229–1248. DOI: 10.1016/j.apm.2006.04.002

    Article  Google Scholar 

  • Perazzo CA, Gratton J (2004) Steady and traveling flows of a power-law liquid over an incline. Journal of Non-Newtonian Fluid Mechanics 118(1): 57–64. DOI: 10.1016/j.jnnfm.2004.02.003

    Article  Google Scholar 

  • Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philosophical Transactions of the Royal Society A 363(1832): 1573–1601. DOI: 10.1098/rsta.2005.1596

    Article  Google Scholar 

  • Ponce VM, Simons DB (1977) Shallow wave propagation in open channel flow. Journal of the Hydraulics Division 103(HY12): 1461–1476.

    Google Scholar 

  • Ponce VM, Li RM, Simons DB (1978) Applicability of kinematic and diffusion models. Journal of the Hydraulics Division 104(HY3): 353–360.

    Google Scholar 

  • Rousset F, Millet S, Botton V, et al. (2007) Temporal stability of Carreau fluid flow down an incline. Journal of Fluids Engineering 129(7): 913–920. DOI: 10.1115/1.2742737

    Article  Google Scholar 

  • Ruyer-Quil C, Chakraborty S, Dandapat BS (2012) Wavy regime of a power-law film flow. Journal of Fluid Mechanics 692: 220–256. DOI: 10.1017/jfm.2011.508

    Article  Google Scholar 

  • Singh VP, Aravamuthan Y (1995) Errors of kinematic-wave and diffusion-wave approximations for time-independent flows. Water Resources Management 9(3): 175–202. DOI: 10.1007/BF00872128

    Article  Google Scholar 

  • Singh VP (1996) Kinematic wave modeling in water resourcesurface water hydrology. Wiley, New York, NY, USA.

    Google Scholar 

  • Smith MK (1990) The mechanism for the long-wave instability in thin liquid film. Journal of Fluid Mechanics 217: 469–485. DOI: 10.1017/S0022112090000805

    Article  Google Scholar 

  • Tsai CW-S, Yen BC (2001) Linear analysis of shallow water wave propagation in open channels. Journal of Engineering 127(5): 459–472. DOI: 10.1061/(ASCE)0733-9399(2001)127:5(459)

    Google Scholar 

  • Tsai CW-S (2003) Applicability of kinematic, noninertia, and quasi-steady dynamic wave models to unsteady flow routing. Journal of Hydraulic Engineering 129(8): 613–626. DOI: 10.1061/(ASCE)0733-9429(2003)129:8(613)

    Article  Google Scholar 

  • Usha R, Millet S, Ben Hadid H, et al. (2011) Shear-thinning film on a porous substrate:Stability analysis of a one-sided model. Chemical Engineering Science. 66(22): 5614–5627. DOI: 10.1016/j.ces.2011.07.041

    Article  Google Scholar 

  • Weinstein SJ (1990) Wave propagation in the flow of shear-thinning fluids down an incline. AIChE Journal 36(12): 1873–1889. DOI: 10.1002/aic.690361211

    Article  Google Scholar 

  • Zhang X, Bai Y, Ng CO (2010) Rheological properties of some marine muds dredged from China coasts. In: Proceedings of the 28th International Offshore and Polar Engineering Conference, Beijing, China. pp 455–461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiana Di Cristo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Cristo, C., Iervolino, M. & Vacca, A. Simplified wave models applicability to shallow mud flows modeled as power-law fluids. J. Mt. Sci. 11, 1454–1465 (2014). https://doi.org/10.1007/s11629-014-3065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3065-6

Keywords

Navigation