Skip to main content
Log in

Preliminary studies on the dynamic prediction method of rainfall-triggered landslide

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Rainfall-triggered landslides have posed significant threats to human lives and property each year in China. This paper proposed a meteorological-geotechnical early warning system GRAPES-LFM (GRAPES: Global and Regional Assimilation and PrEdiction System; LFM: Landslide Forecast Model), basing on the GRAPES model and the landslide predicting model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-Stability Model) for predicting rainfall-triggered landslides. This integrated system is evaluated in Dehua County, Fujian Province, where typhoon Bilis triggered widespread landslides in July 2006. The GRAPES model runs in 5 km×5 km horizontal resolution, and the initial fields and lateral boundaries are provided by NCEP (National Centers for Environmental Prediction) FNL (Final) Operational Global Analysis data. Quantitative precipitation forecasting products of the GRAPES model are downscaled to 25 m×25 m horizontal resolution by bilinear interpolation to drive the TRIGRS model. Results show that the observed areas locate in the high risk areas, and the GRAPES-LFM model could capture about 74% of the historical landslides with the rainfall intense 30mm/h. Meanwhile, this paper illustrates the relationship between the factor of safety (FS) and different rainfall patterns. GRAPES-LFM model enables us to further develop a regional, early warning dynamic prediction tool of rainfall-induced landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Engineering Geology 73: 247–265. DOI: 10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2002) TRIGRS-a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. U. S. Geological Survey Open File.

    Google Scholar 

  • Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler (Series A, Physical Geography) 62(1/2): 23–27. DOI: 10.2307/520449

    Article  Google Scholar 

  • Chen CY, Chen TC, Yu FC, et al. (2005) Rainfall duration and debris-flow initiated studies for real-time monitoring. Environmental Geology 47: 715–724. DOI: 10.1007/s00254-004-1203-0

    Article  Google Scholar 

  • Chen TY, Feng ZY, Chuang YC (2011) An application of TRIGRS on slope failure probability analyses-a case study of Aowanda. Journal of Chinese Soil and Water Conservation 42(3): 228–239. (In Chinese)

    Google Scholar 

  • China Geological Environmental Monitoring Institute (2010) “Eleventh Five-Year” the achievement of national science and technology popularizes plan—Research on the early warning technique of rainfall-induced landslides.

  • Chleborad AF, Baum RL, Godt JW (2006) Rainfall thresholds for forecasting landslides in the Seattle, Washington, area-Exceedance and probability. U. S. Geological Survey Open File.

    Google Scholar 

  • Cong WQ, Li TF, Pan M, et al. (2008) Research on dynamic predictive model of regional rainfall-triggered geologic hazard based on unsaturated flow theory. Acta Scientiarum Naturalium Universitatis Pekinensis 44(2): 212–216. (In Chinese)

    Google Scholar 

  • Dhakal AS, Sidle R (2003) Long-term modeling of landslides for different forest managent practices. Earth Surface Processes & Landforms 28(8): 853–868. DOI: 10.1002/esp.499

    Article  Google Scholar 

  • Dietrich WE, Wilson CJ, Montgomery DR, et al. (1993) Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model. Journal of Geology 101(2): 259–278. DOI: 10.1086/648220

    Article  Google Scholar 

  • Dietrich WE, Reiss R, Hsu ML, et al. (1995) A process-based model for colluviums soil depth and shallow landsliding using digital elevation data. Hydrological Processes 9(3-4): 383–400. DOI: 10.1002/hyp.3360090311

    Article  Google Scholar 

  • Ding JX, Yang ZF, Shang YJ, et al. (2006) A new method for spatio-temporal prediction of rainfall-induced landslide. Science in China: Series D Earth Sciences 49(4): 421–430. DOI: 10.1007/s11430-006-0421-6

    Article  Google Scholar 

  • Ewen J, Parkin G, O’Connell PE (2014) SHETRAN: distributed river basin flow and transport modeling system. Journal of Hydrologic Engineering 5(3): 250–258. DOI: 10.1061/(ASCE)1084-0699(2000)5:3(250)

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, et al. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology 102(3-4): 85–98. DOI: 10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Feng Z, Liu Y, Chang Y (2009) Application of TRIGRS to analyze slope infiltration and stability in medium size watershed. Journal of soil and water conservation 41(3): 339–356. (In Chinese)

    Google Scholar 

  • Godt JW, Baum RL, Savage WZ, et al. (2008) Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology 102(s3-4): 214–226. DOI: 10.1016/j.enggeo.2008.03.019

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, et al. (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics 98(3): 239–267. DOI: 10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resources Research 36(7): 1897–1910. DOI: 10.1029/2000WR900090

    Article  Google Scholar 

  • Jia GY, Tian Y, Liu Y, et al. (2008) A static and dynamic factorscoupled forecasting model of regional rainfall-induced landslides: A case study of Shenzhen. Science in China Series E: Technological Sciences 51(Supp. II): 164–175. DOI: 10.1007/s11431-008-6013-2

    Article  Google Scholar 

  • Kim D, Sangjun IM, Sang HL, et al. (2010) Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRES model. Journal of Mountain Science 7(1): 83–91. DOI: 10.1007/s11629-010-1072-9

    Article  Google Scholar 

  • Li Y, Meng H, Dong Y, et al. (2004) Main types and characteristic of geo-hazards in China—Based on the results of geo-hazard survey in 290 counties. The Chinese Journal of Geological Hazard and Control 15(2): 29–34. DOI: 10.16031/j.cnki.issn.1003-8035.2004.02.005 (In Chinese)

    Google Scholar 

  • Liao ZH, Hong Y, Kirschbaum D, et al. (2011) Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Natural Hazards 58(1): 325–339. DOI: 10.1007/s11069-010-9670-y

    Article  Google Scholar 

  • Liao ZH, Hong Y, Wang J, et al. (2010) Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslide 7(3): 317–324. DOI: 10.1007/s10346-010-0219-7

    Article  Google Scholar 

  • Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46(1-2): 1–17. DOI: 10.1016/S0169-555X(01)00162-3

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Research 30(4): 1153–1171. DOI: 10.1029/93WR02979

    Article  Google Scholar 

  • Montgomery DR, Sullivan K, Greenberg HM (1998) Regional test of a model for shallow landsliding. Hydrological Processes 12(6): 943–955. DOI: 10.1002/(SICI)1099-1085 (199805)12:6<943::AID-HYP664>3.0.CO;2-Z

    Article  Google Scholar 

  • Morrisey MM, Wieczorek GF, Morgan BA (2001) A comparative analysis of hazard models for predicting debris flow in Madison Country, Virginia, USGS, Open-File Report 01-0067

    Google Scholar 

  • Pack HJ, Lee JH, Woo I (2013) Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach. Engineering Geology 161(14): 1–15. DOI: 10.1016/j.enggeo.2013.04.011

    Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) Terrain stability mapping with SINMAP, Technical description and users guide for version 1.00, Report and software available at: http://www.engineering.usu.edu/dtarb/(Aaccess on: 15 June 2015)

    Google Scholar 

  • Raia S, Alvioli M, Rossi M, et al. (2014) Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geoscientific Model Development 7:495–514. DOI: 10.5194/gmd-7-495-2014

    Article  Google Scholar 

  • Ren D, Leslie LM, Fu R, et al. (2010) A storm-triggered landslide monitoring and prediction system: formulation and case study. Earth Interactions 14(12): 1–24. DOI: 10.1175/2010EI337.1

    Article  Google Scholar 

  • Ren D, Fu R, Leslie LM, et al. (2011) Predicting storm-triggered landslides. Bulletin of the American Meteorological Society 92: 129–139. DOI: 10.1175/2010BAMS3017.1

    Article  Google Scholar 

  • Vieira BC, Fernandes NF, Filho OA (2010) Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil. Natural hazards and earth system sciences 10(9): 1829–1837. DOI: 10.5194/nhess-10-1829-2010

    Article  Google Scholar 

  • Wang Y, Li L (2010) Verification of GRAPES Meso V3.0 model forecast results. Journal of Applied Meteorological Science 21(5): 524–533. (In Chinese)

    Google Scholar 

  • Wei L (2005) Study on mechanism and predicting method of landslide hazard triggered by extremely heavy rainfall. PhD thesis, Nanjing University of Information Science & Technology, Nanjing, China. (In Chinese)

    Google Scholar 

  • Wilkinson OL, Anderson MG, Lloyd DM (2002) An integrated hydrological model for rain-induced landslide prediction. Earth Surface Processes and Landforms 27(12): 1285–1297. DOI: 10.1002/esp.409

    Article  Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resource Research 31: 2097–2110. DOI: 10.1029/95WR01136

    Article  Google Scholar 

  • Zhang R, Shen X (2008) On the development of the GRAPES-A new generation of the national operational NWP system in China. Chinese Science Bulletin 22: 3429–3432. DOI: 10.1007/s11434-008-0462-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-li Chen.

Additional information

http://orcid.org/0000-0001-9251-2000

http://orcid.org/0000-0002-9190-3496

http://orcid.org/0000-0002-3164-3864

http://orcid.org/0000-0003-4365-7195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yl., Chen, Dh., Li, Zc. et al. Preliminary studies on the dynamic prediction method of rainfall-triggered landslide. J. Mt. Sci. 13, 1735–1745 (2016). https://doi.org/10.1007/s11629-014-3110-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3110-5

Keywords

Navigation