Skip to main content
Log in

Glacier changes during the past 40 years in the West Kunlun Shan

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Recent studies on glaciers in the West Kunlun Shan, northwest Tibetan Plateau, have shown that they may be stable or retreating slightly. Here, we assess changes in the mass of the glaciers in the West Kunlun Shan (WKS) in an attempt to understand the processes that control their behavior. Glaciers over the recent 40 years (1970–2010) have shrunk 3.4±3.1% in area, based on a comparison between two Chinese glacier inventories. Variations of surface elevations, derived from ICESat-GLAS (Ice, Cloud, and Land Elevation Satellite-Geoscience Laser Altimeter System) elevation products (GLA14 data) using the robust linear-fit method, indicate that the glaciers have been gaining mass at a rate of 0.23±0.24 m w.e./a since 2003. The annual mass budget for the whole WKS range from 2003 to 2009 is estimated to be 0.71±0.62 Gt/a. This gain trend is confirmed by MOD10A1 albedo for the WKS region which shows a descent of the mean snowline altitude from 2003 to 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ageta Y, Zhang WJ, Nakawo M (1989) Mass balance studies on Chongce Ice Cap in the West Kunlun Mountains. Bulletin of Glacier Research 7: 37–43. Available online at: http://www.seppyo.org/bgr/pdf/7/BGR7P37.PDF (Accessed on 9 October 2014)

    Google Scholar 

  • Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Global and Planetary Change 59(1–4): 138–148. DOI: 10.1016/j.gloplacha.2006.11.031.

    Article  Google Scholar 

  • Banwell AF, Willis IC, Arnold NS, et al. (2012) Calibration and evaluation of a high-resolution surface mass-balance model for Paakitsoq, West Greenland. Journal of Glaciology 58(212): 1047–1062. DOI: 10.3189/2012JoG12J034.

    Article  Google Scholar 

  • Berthier E, Arnaud Y, Kumar R, et al. (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment 108(3): 327–338. DOI: 10.1016/j.rse.2006.11.017.

    Article  Google Scholar 

  • Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 5(2): 349–358. DOI: 10.5194/tc-5-349-2011.

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, et al. (2012) The State and Fate of Himalayan Glaciers. Science 336(6079): 310–314. DOI: 10.1126/science.1215828.

    Article  Google Scholar 

  • Box JE, Bromwich DH, Veenhuis BA, et al. (2006) Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. Journal of Climate 19(12): 2783–2800. DOI: 10.1175/JCLI3738.1.

    Article  Google Scholar 

  • Brahmbhatt RM, Bahuguna I, Rathore BP, et al. (2012) Variation of Snowline and Mass Balance of Glaciers of Warwan and Bhut Basins of Western Himalaya Using Remote Sensing Technique. Journal of the Indian Society of Remote Sensing 40(4): 629–637. DOI: 10.1007/s12524-011-0186-z.

    Article  Google Scholar 

  • Braun M, Humbert A, Moll A (2009) Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. Cryosphere 3(1): 41–56. DOI: 10.5194/tc-3-41-2009.

    Article  Google Scholar 

  • Copland L, Sylvestre T, Bishop MP, et al. (2011) Expanded and Recently Increased Glacier Surging in the Karakoram. Arctic Antarctic and Alpine Research 43(4): 503–516. DOI: 10.1657/1938-4246-43.4.503.

    Article  Google Scholar 

  • Dumont M, Gardelle J, Sirguey P, et al. (2012) Linking glacier annual mass balance and glacier albedo retrieved from MODIS data. Cryosphere 6(6): 1527–1539. DOI: 10.5194/tc-6-1527-2012.

    Article  Google Scholar 

  • Fricker HA, Padman L (2006) Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters 33(15): L15502. DOI: 10.1029/2006GL026907.

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience 5(5): 322–325. DOI: 10.1038/ngeo1450.

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, et al. (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7: 1263–1286. DOI: 10.5194/tc-7-1263-2013

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, et al. (2013) A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 340(6134): 852–857. DOI: 10.1126/science.1234532.

    Article  Google Scholar 

  • Greuell W, Kohler J, Obleitner F, et al. (2007) Assessment of interannual variations in the surface mass balance of 18 Svalbard glaciers from the Moderate Resolution Imaging Spectroradiometer/Terra albedo product. Journal of Geophysical Research-Atmospheres 112(D7): D07105. DOI: 10.1029/2006JD007245.

    Article  Google Scholar 

  • Guo WQ, Liu SY, Wei JF, et al. (2013) The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology 54(63): 299–310. DOI: 10.3189/2013AoG63A495.

    Article  Google Scholar 

  • Guo WQ, Xu JL, Liu SY, et al. (2014) The Second Glacier Inventory Dataset of China (Version 1.0). Cold and Arid Regions Science Data Center at Lanzhou. DOI: 10.3972/glacier.001.2013.db.

    Google Scholar 

  • Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram Himalaya. Mountain Research and Development 25(4): 332–340. DOI: 10.1659/0276-4741(2005)025[0332:TKAGEA]2.0. CO;2.

    Article  Google Scholar 

  • Hock R (2005) Glacier melt: a review of processes and their modelling. Progress in Physical Geography 29(3): 362–391. DOI: 10.1191/0309133305pp453ra.

    Article  Google Scholar 

  • Howat IM, Smith BE, Joughin I, et al. (2008) Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophysical Research Letters 35(17): L17505. DOI: 10.1029/2008GL034496.

    Article  Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, et al. (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482(7386): 514–518. DOI: 10.1038/nature10847.

    Article  Google Scholar 

  • Ji P, Guo HD, Zhang L (2013) Remote sensing study of glacier dynamic change in West Kunlun Mountains in the past 20 years. Remote Sensing for Land & Resources 25(1): 93–98. (In Chinese). DOI: 10.6046/gtzyyg.2013.01.17.

    Google Scholar 

  • Kääb A, Berthier E, Nuth C, et al. (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412): 495–498. DOI: 10.1038/nature11324.

    Article  Google Scholar 

  • Kulkarni AV, Bahuguna IM, Rathore BP, et al. (2007) Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current Science 92(1): 69–74. Available online at: http://www.currentscience.ac.in/Downloads/article_id_092_01_0069_0074_0.pdf (Accessed on 9 October 2014)

    Google Scholar 

  • Lei LP, Zeng ZC, Zhang B (2012) Method for Detecting Snow Lines From MODIS Data and Assessment of Changes in the Nianqingtanglha Mountains of the Tibet Plateau. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(3): 769–776. DOI: 10.1109/JSTARS.2012.2200654.

    Article  Google Scholar 

  • Levinsen JF, Howat IM, Tscherning CC (2013) Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data. Journal of Glaciology 59(215): 524–532. DOI: 10.3189/2013JoG12J114.

    Article  Google Scholar 

  • Liu CH, Shi YF, Wang ZT, et al. (2000) Glacier resources and their distributive characteristics in China: a review on Chinese glacier inventory. Journal of Glaciology and Geocryology 22(2): 106–112. (In Chinese)

    Google Scholar 

  • Maussion F, Scherer D, Mölg T, et al. (2014) Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. Journal of Climate 27(5): 1910–1927. DOI: 10.1175/JCLI-D-13-00282.1.

    Article  Google Scholar 

  • Moholdt G, Nuth C, Hagen JO, et al. (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment 114(11): 2756–2767. DOI: 10.1016/j.rse.2010.06.008.

    Article  Google Scholar 

  • Neckel N, Kropacek J, Bolch T, et al. (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environmental Research Letters 9(1), 014009. DOI: 10.1088/1748-9326/9/1/014009.

    Article  Google Scholar 

  • Nuth C, Kaab A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5(1): 271–290. DOI: 10.5194/tc-5-271-2011.

    Article  Google Scholar 

  • Pieczonka T, Bolch T, We JF, et al. (2013) Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment 130: 233–244. DOI: 10.1016/j.rse.2012.11.020.

    Article  Google Scholar 

  • Schenk T, Csatho B (2012) A New Methodology for Detecting Ice Sheet Surface Elevation Changes From Laser Altimetry Data. Ieee Transactions on Geoscience and Remote Sensing 50(9): 3302–3316. DOI: 10.1109/TGRS.2011.2182357

    Article  Google Scholar 

  • Shangguan DH, Liu SY, Ding YJ, et al. (2007) Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Annals of Glaciology 46: 204–208. DOI: 10.3189/172756407782871693.

    Article  Google Scholar 

  • Shi YF, Yao TD, Yang B (1999) Decadal climatic variations recorded in Guliya ice core and comparison with the historical documentary data from East China during the last 2000 years. Science in China Series D-Earth Sciences 42: 91–100. DOI: 10.1007/BF02878857.

    Article  Google Scholar 

  • Shi YF, Liu SY, Ye BS, et al. (2008) Concise glacier inventory of China. Shanghai Popular Science Press, Shanghai, China. pp 145–146. (In Chinese)

    Google Scholar 

  • Stroeve JC, Box JE, Haran T (2006) Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sensing of Environment 105(2): 155–171. DOI: 10.1016/j.rse.2006.06.009.

    Article  Google Scholar 

  • Su H, Wei W, Han P (2003) Changes in Air Temperature and Evaporation in Xinjiang during Recent 50 Years. Journal of Glaciology and Geocryology 25(2): 174–178. (In Chinese).

    Google Scholar 

  • Wang WL, Li J, Zwally HJ (2012) Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet. Journal of Glaciology 58(210): 734–740. DOI: 10.3189/2012JoG11J187.

    Article  Google Scholar 

  • Watanabe O, Zheng BX (1987) First glaciological expedition to West Kunlun Mountains 1985. Bulletin of Glacier Research 5: 77–84. Available online at: http://www.seppyo.org/bgr/pdf/5/BGR5P77.PDF (Accessed on 9 October 2014)

    Google Scholar 

  • Wei JF, Liu SY, Guo WQ, et al. (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Annals of Glaciology 55(66): 213–222. DOI: 10.3189/2014AoG66A038.

    Article  Google Scholar 

  • Yao TD, Jiao KQ, Tian LD, et al. (1995) Climatic and environmental records in Guliya Ice Cap. Science in China Series B-Chemistry Life Sciences & Earth Sciences 38(2): 228–237. Available online at: http://chem.scichina.com:8081/sciBe/EN/Y1995/V38/I2/228 (Accessed on 9 October 2014)

    Google Scholar 

  • Yao TD, Jiao KQ, Tian LD, et al. (1996) Climatic variations since the Little Ice Age recorded in the Guliya Ice Core. Science in China Series D-Earth Sciences 39(6): 587–596. Available online at: http://earth.scichina.com:8080/sciDe/EN/Y1996/V39/I6/587 (Accessed on 9 October 2014)

    Google Scholar 

  • Yao TD, Wang YQ, Liu SY, et al. (2004) Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China. Science China Series D 47(12): 1065–1075. DOI: 10.1360/03yd0256.

    Article  Google Scholar 

  • Yasuda T, Furuya M (2013) Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by Synthetic Aperture Radar data. Remote Sensing of Environment 128: 87–106. DOI: 10.1016/j.rse.2012.09.021.

    Article  Google Scholar 

  • Yde JC, Paasche Ø (2010) Reconstructing Climate: Change Not All Glaciers Suitable. Eos, Transactions American Geophysical Union 91(21): 189–190. DOI: 10.1029/2010EO210001.

    Article  Google Scholar 

  • Zhang ZS, Jiao KQ (1987) Modern glaciers on the south slope of West Kunlun Mountains (in Aksayqin Lake and Guozha Co Lake drainage areas). Bulletin of Glacier Research 5: 85–91. Available online at: http://www.seppyo.org/bgr/pdf/5/BGR5P85.PDF (Accessed on 9 October 2014)

    Google Scholar 

  • Zheng BX, Ageta Y, Chen JM (1988) The preliminary report on the Sino-Japanese joint Glaciological expedition to West Kunlun Mountain, 1987. Journal of Glaciology and Geocryology 10(1): 84–89. (In Chinese)

    Google Scholar 

  • Zwally HJ, Li J, Brenner AC, et al. (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. Journal of Glaciology 57(201): 88–102. DOI: 10.3189/002214311795306682

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-yin Liu.

Additional information

http://orcid.org/0000-0003-1593-3041

http://orcid.org/0000-0002-9625-7497

http://orcid.org/0000-0002-9625-7497

http://orcid.org/0000-0002-3211-9300

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Wj., Liu, Sy., Wei, Jf. et al. Glacier changes during the past 40 years in the West Kunlun Shan. J. Mt. Sci. 12, 344–357 (2015). https://doi.org/10.1007/s11629-014-3220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3220-0

Keywords

Navigation