Skip to main content
Log in

Landslide susceptibility assessment using the certainty factor and analytic hierarchy process

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

A new approach combining the certainty factor (CF) and analytic hierarchy process (AHP) methods was proposed to assess landslide susceptibility in the Ziyang district, which is situated in the Qin-Ba Mountain region, China. Landslide inventory data were collected based on field investigations and remote sensing interpretations. A total of 791 landslides were identified. A total of 633 landslides were randomly selected from this data set as the training set, and the remaining landslides were used for validation as the test set. Nine factors, including the slope angle, slope aspect, slope curvature, lithology, distance to faults, distance to streams, precipitation, road network intensity degree and land use were chosen as the landslide causal factors for further susceptibility assessment. The weight of each factor and its subclass were calculated by AHP and CF methods. Landslide susceptibility was compared between the bivariate statistical method and the proposed CF-AHP method. The results indicate that the distance to streams, distance to faults and lithology are the most dominant causal factors associated with landslides. The susceptibility zonation was categorized into five classes of landslide susceptibility, i.e., very high, high, moderate, low and very low level. Lastly, the relative operating characteristics (ROC) curve was used to validate the accuracy of the new approach, and the result showed a satisfactory prediction rate of 78.3%, compared to 69.2% obtained with the landslide susceptibility index method. The results indicate that the CF-AHP combined method is more appropriate for assessing the landslide susceptibility in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akgun A, Turk N (2010) Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences 61(3): 595–611. DOI: 10.1007/s12665-009-0373-1

    Article  Google Scholar 

  • Alcantara-Ayala I (2004) Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 61: 19–40. DOI: 10.1016/j.geomorph.2003.11.004

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N. (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano river, Niigata prefecture, Japan. Landslides 1(1): 73–81. DOI: 10.1007/s10346-003-0006-9

    Article  Google Scholar 

  • Bai SB, Lu P, Wang J (2015) Landslide susceptibility assessment of the Youfang catchment using logistic regression. Journal of Mountain Science 12(4): 816–827. DOI: 10.1007/s11629-014-3171-5

    Article  Google Scholar 

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, et al. (2012) Potential suitability for urban planning and industry development by using natural hazard maps and geological-geomorphological parameters. Environmental Earth Sciences 66(2): 537–548, DOI: 10. 1007/s12665-011-1263-x

    Article  Google Scholar 

  • Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estudios Geológicos 65(1): 49–65. DOI: 10.3989/egeol.08642.036

    Article  Google Scholar 

  • Bathrellos GD, Karymbalis E, Skilodimou HD, et al. (2016) Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environmental Earth Sciences 75(4): 319. DOI: 10.1007/s12665-015-5157-1

    Article  Google Scholar 

  • Baum R L, Godt J W, Savage W Z (2010) Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research-Earth Surface 115(F3). DOI: 10.1029/2009jf001321

    Google Scholar 

  • Bednarik M, Magulova B, Matys M, et al. (2010) Landslide susceptibility assessment of the Kralovany-Liptovsky Mikulas railway case study. Physics and Chemistry of the Earth 35(3–5): 162–171. DOI: 10.1016/j.pce.2009.12.002

    Article  Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. Proc., Fourth International Symposium on landslide, vol. 1. Canadian Geotechnical Society, Toronto, Canada. pp. 307–324.

    Google Scholar 

  • Burrough P, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, USA.

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T, et al. (2006) Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and the Environment 65(4): 341–411.

    Article  Google Scholar 

  • Chousianitis K, Del Gaudio V, Sabatakakis N, et al. (2016) Assessment of Earthquake-Induced Landslide Hazard in Greece: From Arias Intensity to Spatial Distribution of Slope Resistance Demand. Bulletin of the Seismological Society of America 106(1): 174–188. DOI: 10.1785/0120150172

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, et al. (2001) Assessment of landslide susceptibility on thenatural terrain of Lantau Island, Hong Kong. Environmental. Geology 40: 381–391.

    Google Scholar 

  • Daneshvar MRM (2014) Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran. Landslides 11(6): 1079–1091. DOI: 10.1007/s10346-013-0458-5

    Article  Google Scholar 

  • Demir G, Aytekin M, Akgun A, et al. (2013) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Natural Hazards 65(3): 1481–1506. DOI: 10.1007/s11069-012-0418-8

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, et al. (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards 65(1): 135–165. DOI: 10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C, Van Asch TW (2004) Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Natural Hazards 32(1): 1–23. DOI: 10.1023/B: NHAZ.0000026786.85589.4a

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology 44: 147–161. DOI: 10.1016/S0013-7952(97)81260-4

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, et al. (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1): 181–216. DOI: 10.1016/S0169-555X (99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, et al. (2006) Estimating the quality of landslide susceptibility models. Geomorphology, 81(1): 166–184. DOI: 10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water resources research 36(7): 1897–1910. DOI: 10.1029/2000WR900090

    Article  Google Scholar 

  • Kanungo DP, Sarkar S, Sharma S (2011) Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides. Natural Hazards 59(3): 1491–1512. DOI: 10.1007/s11069-011-9847-z

    Article  Google Scholar 

  • Kamp U, Growley BJ, Khattak GA, et al. (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101(4): 631–642. DOI: 10.1016/j.geomorph.2008.03.003

    Article  Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1): 17–28. DOI: 10.1016/j.geomorph.2005.07.005

    Article  Google Scholar 

  • Lepore C, Kamal SA, Shanahan P, et al. (2012) Rainfall-induced landslide susceptibility zonation of Puerto Rico. Environmental Earth Sciences 66(6): 1667–1681. DOI: 10.1007/s12665-011-0976-1

    Article  Google Scholar 

  • Lim TT, Rahardjo H, Chang MF, et al. (1996) Effect of rainfall on matric suctions in a residual soil slope. Canadian Geotechnical Journal 33(4): 618–628. DOI: 10.1139/t96-087

    Article  Google Scholar 

  • Lu N, Godt JW (2013) Hillslope hydrology and stability. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Malczewski J (1999) GIS and multi-criteria decision analysis. Wiley, New York. p 392.

    Google Scholar 

  • Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15(3): 213–225. DOI: 10.1016/0169-555X(95)00071-C

    Article  Google Scholar 

  • Mejfa-Navarro M, Wohl EE, Oaks SD (1994). Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado. Geomorphology 10: 331–354.

    Article  Google Scholar 

  • Nagarajan R, Roy A, Kumar RV, et al. (2000). Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bulletin of Engineering Geology and the Environment 58(4): 275–287. DOI: 10.1007/s100649900032

    Article  Google Scholar 

  • Panagopoulos GP, Bathrellos GD, Skilodimou HD, et al. (2012) Mapping Urban Water Demands Using Multi-Criteria Analysis and GIS. Water Resources Management 26(5): 1347–1363. DOI: 10.1007/s11269-011-9962-3

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, et al. (2013) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences 6(7): 2351–2365. DOI: 10.1007/s12517-012-0532-7

    Article  Google Scholar 

  • Pradhan B, Youssef AM, Varathrajoo R (2010) Approaches for Delineating Landslide Hazard Areas Using Different Training Sites in an Advanced Artificial Neural Network Model. Geospatial Information Science 13(2): 93–102. DOI: 10.1007/s11806-010-0236-7

    Article  Google Scholar 

  • Ramani SE, Pitchaimani K, Gnanamanickam VR (2011) GIS based landslide susceptibility mapping of Tevankarai Ar subwatershed, Kodaikkanal, India using binary logistic regression analysis. Journal of Mountain Science 8(4): 505–517. DOI: 10.1007/s11629-011-2157-9

    Article  Google Scholar 

  • Regmi AD, Yoshida K, Pourghasemi HR, et al. (2014) Landslide susceptibility mapping along Bhalubang-Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. Journal of Mountain Science 11(5): 1266–1285. DOI: 10.1007/s11629-013-2847-6

    Article  Google Scholar 

  • Romer C, Ferentinou M (2016) Shallow landslide susceptibility assessment in a semiarid environment-A Quaternary catchment of KwaZulu-Natal, South Africa. Engineering Geology 201: 29–44. DOI: 10.1016/j.enggeo.2015.12.013

    Article  Google Scholar 

  • Rosso R, Rulli M C, Vannucchi G. (2006) A physically based model for the hydrologic control on shallow landsliding. Water Resources Research 42(6): 770–775. DOI: 10.1029/2005WR004369

    Article  Google Scholar 

  • Rozos D, Bathrellos GD, Skilodimou HD (2011) Comparison of the implementation of Rock Engineering System (RES) and Analytic Hierarchy Process (AHP) methods, based on landslide susceptibility maps, compiled in GIS environment. A case study from the Eastern Achaia County of Peloponnesus, Greece. Environmental Earth Sciences 63(1): 49–63. DOI: 10.1007/s12665-010-0687-z

    Article  Google Scholar 

  • Saaty TL (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15(3): 234–281. DOI: 10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process. McGraw-Hill, New York.

    Google Scholar 

  • Saaty TL (1994) Fundamentals of decision making and priority theory with analytic hierarchy process. RWS Publications, Pittsburgh.

    Google Scholar 

  • Saaty TL (2000) Decision making for leaders: the analytical hierarchy process for decisions in a complex world. RWS Publications, Pittsburgh.

    Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. International Journal of Remote Sensing 23(2): 357–369. DOI: 10.1080/01431160010014260

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, et al. (2005) An approach for GISbased statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides 2(1): 61–69.

    Article  Google Scholar 

  • Shortliffe EH, Buchanan GG (1975) A model of inexact reasoning in medicine. Math Biosciences 23(3–4): 351–379. DOI: 10.1016/0025-5564(75)90047-4

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857): 1285–1293. DOI: 10.1126/science.3287615

    Article  Google Scholar 

  • Tudes S, Yigiter ND (2010) Preparation of land use planning model using GIS based on AHP: case study Adana-Turkey. Bulletin of Engineering Geology and the Environment 69(2): 235–245. DOI: 10.1007/s10064-009-0247-5

    Article  Google Scholar 

  • Tsai TL (2008) The influence of rainstorm pattern on shallow landslide. Environmental Geology 53(7): 1563–1569. DOI: 10.1007/s00254-007-0767-x

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards 30(3): 399–419. DOI: 10.1023/B: NHAZ.0000007097.42735.9e

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation-why is it still so difficult? Bulletin of Engineering Geology and the Environment 65(2): 167–184. DOI: 10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Engineering Geology 102(3-4): 112–131. DOI: 10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Wang M, Qiao JP (2013) Reservoir-landslide hazard assessment based on GIS: A case study in Wanzhou section of the Three Gorges Reservoir. Journal of Mountain Science 10(6): 1085–1096. DOI: 10.1007/s11629-013-2498-7

    Article  Google Scholar 

  • Wang YT, Seijmonsbergen AC, Bouten W, et al. (2015) Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science 12(2): 268–288. DOI: 10.1007/s11629-014-3134-x

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1): 1–12. DOI: 10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Computers & Geosciences 35(6): 1125–1138. DOI: 10.1016/j.cageo.2008.08.007

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Al-Kathery M, et al. (2015) Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation. Journal of African Earth Sciences 101: 309–321. DOI: 10.1016/j.jafrearsci.2014.09.021

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate financial support from National Natural Science Foundation of China (Grant No. 41272282), National Natural Science Foundation of China-Youth Foundation (Grant No. 41402254), geological disaster survey projects of China Geological Survey (Grant No. 1212011220135, Grant No. DDW2016-01), and the Fundamental Research Funds for the Central Universities (Grant No. 310826175030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Fan.

Additional information

http://orcid.org/0000-0002-1260-8027

http://orcid.org/0000-0002-9885-421X

http://orcid.org/0000-0002-9713-4341

http://orcid.org/0000-0003-0207-2174

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Wei, Xs., Cao, Yb. et al. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process. J. Mt. Sci. 14, 906–925 (2017). https://doi.org/10.1007/s11629-016-4068-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4068-2

Keywords

Navigation