Skip to main content
Log in

Debris flow hazard assessment by means of numerical simulations: implications for the Rotolon creek valley (Northern Italy)

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

On 4th November 2010, a debris flow detached from a large debris cover accumulated above the lowermost portion of the Rotolon landslide (Vicentine Pre-Alps, NE Italy) and channelized in the valley below within the Rotolon Creek riverbed. Such event evolved into a highly mobile and sudden debris flow, damaging some hydraulic works and putting at high risk four villages located along the creek banks. A monitoring campaign was carried out by means of a ground based radar interferometer (GB-InSAR) to evaluate any residual displacement risk in the affected area and in the undisturbed neighbouring materials. Moreover, starting from the current slope condition, a landslide runout numerical modelling was performed by means of DAN-3D code to assess the impacted areas, flow velocity, and deposit distribution of the simulated events. The rheological parameters necessary for an accurate modelling were obtained through the back analysis of the 2010 debris flow event. Back analysis was calibrated with all of the available terrain data coming from field surveys and ancillary documents, such as topographic, geomorphological and geological maps, with pre- and post-event LiDAR derived DTMs, and with orthophotos. Finally, to identify new possible future debris flow source areas as input data for the new modelling, all the obtained terrain data were reanalysed and integrated with the GB-InSAR displacement maps; consequently, new simulations were made to forecast future events. The results show that the integration of the selected modelling technique with ancillary data and radar displacement maps can be a very useful tool for managing problems related to debris flow events in the examined area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agliardi F, Crosta GB, Zanchi A, et al. (2009) Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology 103: 113–129. DOI: 10.1016/j.geomorph.2007.09.015.

    Article  Google Scholar 

  • Altieri V, Colombo P, Dal Prà A (1994) Study for the evaluation of slope stability conditions and Rotolon creek valley located in the Upper Agno Valley in the munivipality of Recoaro Terme (Vicenza). Relazione Geologico–Geotecnica. Regione del Veneto Segreteria Regionale per il Territorio–Dipartimento Lavori Pubblici–Venezia 97. (In Italian).

    Google Scholar 

  • Antonello G, Casagli N, Farina P, et al. (2004) Ground-based SAR interferometry for monitoring mass movements. Landslides 1 (1): 21–28. DOI: 10.1007/s10346-003-0009-6.

    Article  Google Scholar 

  • Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Problems 14(4): R1.

    Article  Google Scholar 

  • Barbieri G, De Zanche V, Di Lallo E, et al. (1980) Recoaro geological map. Memorie Scietà Geologica XXXIV Padova. pp 23–52. (In Italian).

    Google Scholar 

  • Brayshaw D, Hassan MA (2009) Debris flow initiation and sediment recharge in gullies. Geomorphology 109 (3): 122–131. DOI: 10.1016/j.geomorph.2009.02.021.

    Article  Google Scholar 

  • Bardi F, Frodella W, Ciampalini A, et al. (2014) Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study. Geomorphology 223: 45–60. DOI: 10.1016/j.geomorph.2014.06.025

    Article  Google Scholar 

  • Bossi G, Crema S, Frigerio S, et al. (2015a) The Rotolon catchment early-warning system. In: Lollino G et al. (eds.), Engineering Geology for Society and Territory. Springer International Publishing 3: 91–95. DOI: 10.1007/978-3-319-09054-2_18

    Google Scholar 

  • Bossi G, Cavalli M, Crema S, et al. (2015b) Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (eastern Italian Alps). Natural Hazards and Earth System Science 15 (4): 715–722. DOI: 10.5194/nhess-15-715-2015.

    Article  Google Scholar 

  • Coe JA, Cannon SH, Sant PM (2008) Introduction to the special issue on debris flows initiated by runoff, erosion, and sediment entrainment in western North America. Geomorphology 96 (3): 247–249. DOI: 10.1016/j.geomorph. 2007.05.001.

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal 33 (2): 260–271. DOI: 10.1139/t96-005.

    Article  Google Scholar 

  • Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth-Science Reviews 40 (3): 209–227. DOI: 10.1016/0012-8252(95)00065-8.

    Article  Google Scholar 

  • Chow VT (1959) Open-Channel Hydraulics. McGraw-Hill, New York. p 465.

    Google Scholar 

  • Evans SG, Clague JJ (1992) Glacier-related hazards and climatic change. In proceeding of the world at risk: Natural hazards and climate change, AIP Conference, Boston, Massachusetts (USA), 4-16 Jan 1992. pp 48–60. DOI: 10.1063/1.43890

    Google Scholar 

  • McColl ST, Davies TRH, McSaveney MJ (2010) Glacier retreat and rock-slope stability: debunking debuttressing. Geologically active: delegate papers 11th Congress of the International Association for Engineering Geology and the Environment, Auckland, Aotearoa, New Zealand, 5-10 September 2010. pp 467–474.

    Google Scholar 

  • Fidolini F, Pazzi V, Frodella W, et al. (2015) Geomorphological characterization, monitoring and modeling of the Monte Rotolon complex landslide (Recoaro Terme, Italy). In: Lollino G (eds.), Engineering Geology for Society and Territory. Springer International Publishing. pp 1311–1315. DOI: 10.1007/978-3-319-09057-3_230

    Chapter  Google Scholar 

  • Frigerio S, Schenato L, Bossi G, et al. (2014) A web-based platform for automatic and continuous landslide monitoring: The Rotolon (Eastern Italian Alps) case study. Computers & Geosciences 63: 96–105. DOI: 10.1016/j.cageo.2013.10.015

    Article  Google Scholar 

  • Frodella W, Morelli S, Fidolini F, et al. (2014) Geomorphology of the Rotolon landslide (Veneto Region, Italy). Journal of Maps 10 (3): 394–401. DOI: 10.1080/17445647.2013.869666.

    Article  Google Scholar 

  • Frodella W, Fidolini F, Morelli S, et al. (2015) Application of infrared thermography for landslide mapping: The rotolon DSGDS case study. Rendiconti Online Società Geologica Italiana 35: 144–147. DOI: 10.1007/978-3-319-09057-3_230

    Article  Google Scholar 

  • Frodella W, Ciampalini A, Gigli G, et al. (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 264: 80–94. DOI: 10.1016/j.geomorph.2016.04.008.

    Article  Google Scholar 

  • Hsü KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geological Society of America Bulletin 86 (1): 129–140.

    Article  Google Scholar 

  • Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazard for design of remedial measures. Canadian Geotechnical Journal 21 (4): 663–677. DOI: 10.1139/t84-073.

    Article  Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal 32 (4): 610–623. DOI: 10.1139/t95-063.

    Article  Google Scholar 

  • Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset K, Balkema AA (eds.). Proceedings of the 7th International Symposium on Landslides Trondheim Norway, 17-21 June 1996. Rotterdam, The Netherlands. pp 233–238.

    Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Computers & Geosciences 35 (5): 978–992. DOI: 10.1016/j.cageo.2007.12.003

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Reviews of Geophysics 35 (3): 245–296. DOI:10.1029/97RG00426.

    Article  Google Scholar 

  • Jakob M (2005) A size classification for debris flows. Engineering geology 79 (3): 151–161. DOI: 10.1016/j.enggeo. 2005.01.006.

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three -dimensional terrain. Canadian Geotechnical Journal 41 (6): 1084–1097. DOI: 10.1139/T04-052.

    Article  Google Scholar 

  • McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. PhD thesis, University of British Columbia, Vancouver, British Columbia.

    Google Scholar 

  • Mizuyama T, Kobashi S, Ou G (1992) Prediction of debris flow peak discharge. In Proceedings of the International Symposium Interpraevent, Bern, Switzerland. pp 99–108.

    Google Scholar 

  • Morelli S, Salvatici T, Nolesini T, et al. (2016) Analogue and numerical modeling of the Stromboli hot avalanches. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds.), Landslides and Engineered Slopes. Experience, Theory and Practice. Proceedings of the 12th International Symposium on Landslides, 12-19 June 2016, Napoli, Italy. CRC Press, Napoli, Italy. pp 1493–1500. DOI: 10.1201/b21520-184

    Google Scholar 

  • Morelli S, Monroy VHG, Gigli G, et al. (2010) The Tancitaro debris avalanche: characterization, propagation and modeling. Journal of Volcanology and Geothermal Research 193 (1): 93–105. DOI: 10.1016/j.jvolgeores.2010.03.008

    Article  Google Scholar 

  • Nocentini M, Tofani V, Gigli G, et al. (2015) Modeling debris flows in volcanic terrains for hazard mapping: the case study of Ischia Island (Italy). Landslides 12 (5): 831–846. DOI:10.1007/s10346-014-0524-7

    Article  Google Scholar 

  • Nolesini T, Di Traglia F, Del Ventisette C, et al. (2013) Deformations and slope instability on Stromboli volcano: Integration of GBInSAR data and analog modeling. Geomorphology 180-181: 242–254. DOI: 10.1016/j.geomorph. 2012.10.014

    Article  Google Scholar 

  • Pazzi V, Morelli S, Pratesi F, et al. (2016) Assessing the safety of schools affected by geo-hydrologic hazards: The geohazard safety classification (GSC). International Journal of Disaster Risk Reduction 15: 80–93. http://dx.doi.org/10.1016/j.ijdrr. 2015.11.006

    Article  Google Scholar 

  • Pierson TC, Scott KM (1985) Downstream dilution of a lahar: transition from debris flow to hyperconcentrated streamflow. Water Resources Research 21 (10): 1511–1524. DOI: 10.1029/WR021i010p01511

    Article  Google Scholar 

  • Prochaska A, Santi P, Higgins J, et al. (2008) A study of methods to estimate debris flow velocity, Landslides 5 (4): 431–444. DOI: 10.1007/s10346-008-0137-0

    Article  Google Scholar 

  • Revellino P, Hungr O, Guadagno FM, et al. (2004) Velocity and runout prediction of destructive debris flows and debris avalanches in pyroclastic deposits, Campania Region, Italy. Environmental Geology 45 (3): 295–311. DOI: 10.1007/s00254-003-0885-z

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Natural Hazards 19 (1): 47–77. DOI: 10.1023/A:1008064220727

    Article  Google Scholar 

  • Rudolf H, Leva D, Tarchi D, et al. (1999) A mobile and versatile SAR system. In Proceeding of the Geoscience and Remote Sensing Symposium, 1999. IGARSS'99. IEEE 1999 International. pp 592–594. DOI: 10.1109/IGARSS.1999.773575

    Google Scholar 

  • Salvatici T, Di Roberto A, Di Traglia F, et al. (2016a) From hot rocks to glowing avalanches: Numerical modelling of gravityinduced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy). Geomorphology 273: 93–106. DOI:10.1016/j.geomorph.2016.08.011

    Article  Google Scholar 

  • Salvatici T, Morelli S, Di Traglia F (2016b) Runout modelling of gravity-induced pyroclastic density currents at Stromboli volcano (Italy). Rendiconti Online Soietà Geologica Italiana 41: 195–198. DOI: 10.3301/ROL.2016.127

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199: 177–215. DOI: 10.1017/S0022112089000340

    Article  Google Scholar 

  • Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F (2012) Dating torrential processes on fans and cones: methods and their application for hazard and risk assessment. Springer Science & Business Media, Berlin, Heidelberg, New York, Vol. 47.

    Google Scholar 

  • Schraml K, Thomschitz B, McArdell BW, et al. (2015) Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Natural Hazards and Earth System Sciences Discussions 3 (2): 1397–1425. DOI: 10.5194/nhess-15-1483-2015

    Article  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, et al. (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Engineering Geology 68 (1): 15–30. DOI: 10.1016/S0013-7952(02)00196-5

    Article  Google Scholar 

  • Trivelli G (1991) History of the territory and inhabitants of Recoaro, in Recoaro Terme municipality. Istituto Geografico De Agostini. (In Italian)

    Google Scholar 

  • Voellmy A (1955) Uber die Zerstorunskraft von Lawinen (On breaking force of avalanches). Schweizerische Bauzeitung 73: 212–285. (In German)

    Google Scholar 

  • Yifru AL (2014) Assessment of Rheological Models for Run-out Distance Modeling of Sensitive Clay Slides, Focusing on Voellmy Rheology. Master of Science thesis, Norwegian University of Science and Technology.

    Google Scholar 

  • Zanchetta G, Sulpizio R, Pareschi MT, et al. (2004) Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation. Journal of Volcanology and Geothermal Research 133 (1): 377–393. DOI: 10.1016/S0377-0273(03)00409-8

    Article  Google Scholar 

  • Zischinsky U (1969) Uber sackungen. Rock Mechanics 1 (1): 30–52.

    Article  Google Scholar 

Download references

Acknowledgments

The GB-InSAR data were acquired in the framework of the monitoring activity carried out in the post-emergency management coordinated by the Italian Civil Protection Department. The available DTMs and aerial photos were acquired by means of aerial LiDAR surveys on behalf of the Veneto Soil Defense Regional Directorate on 21st October 2010 (pre-event) and 23rd November 2010 (post-event), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Salvatici.

Additional information

http://orcid.org/0000-0003-4270-974X

http://orcid.org/0000-0001-8069-3609

http://orcid.org/0000-0002-9191-0346

http://orcid.org/0000-0001-8266-2777

http://orcid.org/0000-0001-6960-058X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvatici, T., Morelli, S., Pazzi, V. et al. Debris flow hazard assessment by means of numerical simulations: implications for the Rotolon creek valley (Northern Italy). J. Mt. Sci. 14, 636–648 (2017). https://doi.org/10.1007/s11629-016-4197-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4197-7

Keywords

Navigation