Skip to main content
Log in

Anisotropy of point defect diffusion in alpha-zirconium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two types of intrinsic defect, i.e., vacancy and self-interstitial atom (SIA), are formed in metals during irradiation with energetic particles. The evolution of defect population leads to significant changes in microstructure and causes a number of radiation-induced property changes. Some phenomena, such as radiation growth of anisotropic materials, are due to anisotropy in the atomic mass transport by point defects. Detailed information on atomic-scale mechanisms is, therefore, necessary to understand such phenomena. In this article, we present results of a computer simulation study of mass transport via point defects in alpha-zirconium. The matrix of self-diffusion coefficients and activation energies for vacancy and SIA defects have been obtained, and different methods of treatment of diffusion have been tested. Molecular dynamics (MD) shows that vacancy diffusion is approximately isotropic in the temperature range studied (1050 to 1650 K), although some preference for basalplane diffusion was observed at the lower end of the range. The mechanism of interstitial diffusion changes from one-dimensional (1-D) in a 〈11\(\bar 2\)0〉 direction at low temperature (<300 K) to two-dimensional (2-D) in the basal plane and, then, three-dimensional (3-D) at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Herzig, R. Willecke, and K. Vieregge: Phil. Mag. A, 1991, vol. 63, pp. 949–57.

    CAS  Google Scholar 

  2. G.M. Hood: Defects and Diffusion Data, 1993, vols. 95–98, pp. 755–66; G.M. Hood, H. Zou, R.J. Schultz, N. Matsuura, J.A. Roy, and J.A. Jackman: Def. Diff. Forum, 1997, vols. 143–147, pp. 49–54.

    Google Scholar 

  3. R.A. Pérez, M.L. Aguirre, and F. Dyment: J. Nucl. Mater, 1996, vol. 229, pp. 15–23.

    Article  Google Scholar 

  4. M. Köppers, C. Herzig, M. Friesel, and Y. Mishin: Acta Mater., 1997, vol. 45, pp. 4181–93.

    Article  Google Scholar 

  5. C.H. Woo: Rad. Effect Def. Solids, 1998, vol. 144, pp. 145–69.

    CAS  Google Scholar 

  6. D.J. Oh and R.A. Johnson: J. Nucl. Mater., 1989, vol. 169, pp. 5–8.

    Article  CAS  Google Scholar 

  7. M. Fuse: J. Nucl. Mater., 1985, vol. 136, pp. 250–57.

    Article  CAS  Google Scholar 

  8. D.J. Bacon: J. Nucl. Mater., 1988, vol. 159, pp. 176–89, 1993, vol. 206, pp. 249–65.

    Article  CAS  Google Scholar 

  9. R.A. Johnson: Phil. Mag. A, 1991, vol. 63, pp. 865–72.

    CAS  Google Scholar 

  10. A.M. Monti: Phys. Status Solidi (b), 1991, vol. 167, pp. 37–49.

    CAS  Google Scholar 

  11. G.J. Ackland, S.J. Wooding, and D.J. Bacon: Phil. Mag. A, 1995, vol. 71, pp. 553–68.

    CAS  Google Scholar 

  12. A.G. Mikhin, Y.N. Osetsky, and V.G. Kapinos: Phil. Mag. A, 1994, vol. 70, pp. 25–33.

    CAS  Google Scholar 

  13. J.R. Fernández, A.M. Monti, and R.C. Pasianot: J. Nucl. Mater., 1996, vol. 229, pp. 1–9.

    Article  Google Scholar 

  14. B.J. Whiting and D.J. Bacon: MRS Symp. Proc., 1997, vol. 439, pp. 389–94.

    CAS  Google Scholar 

  15. G. Simonelli, R. Pasianot, and E.J. Savino: Phys. Status Solidi (b), 1995, vol. 191, pp. 249–66.

    CAS  Google Scholar 

  16. R. Pasianot and A.M. Monti: J. Nucl. Mater., 1998, vol. 264, pp. 198–205.

    Article  Google Scholar 

  17. R. Pasianot, A.M. Monti, G. Simonelli, and E.J. Savino: J. Nucl. Mater., 2000, vol. 276, pp. 230–34.

    Article  CAS  Google Scholar 

  18. M. Wen, C.H. Woo, and H. Huang: J. Comp.-Aided Mater. Des., 2000, vol. 7, pp. 97–110.

    Article  CAS  Google Scholar 

  19. Y.N. Osetsky: Def. Diff. Forum., 2001, vols. 187–191, pp. 71–91.

    Article  Google Scholar 

  20. D. Fincham: Dynamical Processes in Condensed Matter, Advanced Chemistry Physics, LXIII (vol. 63), M.W. Evans ed., Wiley, New York, NY, 1985, pp. 493–577.

    Google Scholar 

  21. Y.N. Osetsky, A.G. Mikhin, and A. Serra: Phil. Mag. A, 1995, vol. 72, pp. 361–81.

    CAS  Google Scholar 

  22. D.H. Tsai, R. Bullough, and R.C. Perrin: J. Phys. C: Solid State Phys., 1970, vol. 3, pp. 2022–31; A.G. Mikhin and Y.N. Osetsky: J. Phys.: Condens. Matter., 1993, vol. 5, pp. 9121–30.

    Article  Google Scholar 

  23. Y.N. Osetsky, D.J. Bacon, A. Serra, B.N. Singh, and S.I. Golubov: The University of Liverpool, Liverpool, unpublished research, 2001.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Defect Properties and Mechanical Behavior of HCP Metals and Alloys” at the TMS Annual Meeting, February 11–15, 2001, in New Orleans, Louisiana, under the auspices of the following ASM committees: Materials Science Critical Technology Sector, Structural Materials Division, Electronic, Magnetic & Photonic Materials Division, Chemistry & Physics of Materials Committee, Joint Nuclear Materials Committee, and Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osetsky, Y.N., Bacon, D.J. & de Diego, N. Anisotropy of point defect diffusion in alpha-zirconium. Metall Mater Trans A 33, 777–782 (2002). https://doi.org/10.1007/s11661-002-0144-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0144-z

Keywords

Navigation