Skip to main content
Log in

Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A substantial amount of work has been performed on the effect of high rates of loading on the deformation and failure of fcc and bcc metals. In contrast, the influence of high strain rates and temperature on the flow stress of hcp metals has received relatively little attention, and the modes of dynamic failure of these materials are poorly characterized. The low symmetry of these materials and the development of twinning lead to a particularly rich set of potential mechanisms for deformation and failure at high rates. This article reviews results of high-strain-rate deformation and dynamic failure studies on hcp metals, with a focus on titanium, Ti-6Al-4V, and hafnium. Strain rates as high as 105 s −1 are considered, and observations of adiabatic shear localization and subsequent failure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.V.R.K. Prasad and R.W. Armstrong: Phil. Mag., 1974, vol. 29, pp. 1421–25.

    CAS  Google Scholar 

  2. B.J. Koeppel and G. Subhash: Metall. Mater. Trans. A—Phys. Metall. Mater. Sci., 1999, vol. 30 (10), pp. 2641–48.

    Article  Google Scholar 

  3. J.R. Asay, L.C. Chhabildas, and J.L. Wise: in Shock Waves in Condensed Matter—1981, W.J. Nellis, L. Seaman, and R.A. Graham, ed., American Institute of Physics, New York, NY, 1982, pp. 427–31.

    Google Scholar 

  4. M.D. Bjorkman and J.E. Shrader: in Shock Waves in Condensed Matter—1981, W.J. Nellis, L. Seaman, and R.A. Graham, eds., American Institute of Physics, New York, NY, 1982, pp. 432–36.

    Google Scholar 

  5. W.C. Moss: J. Appl. Phys., 1985, vol. 57, pp. 1665–70.

    Article  Google Scholar 

  6. D.J. Steinberg and R.W. Sharp, Jr.: J. Appl. Phys., 1981, vol. 52, pp. 5072–83.

    Article  CAS  Google Scholar 

  7. W.R. Blumenthal, R.W. Carpenter, C.P. Trujillo, S.P. Abeln, and G.T. Gray III: APS Shock Physics, 1997.

  8. D. Montoya, G. Naulin, and J.P. Ansart: J. Phys. IV, 1991, vol. 1 (C3), pp. 27–34.

    Google Scholar 

  9. A.E. Abey and H.D. Stromberg: Trans. ASME: J. Basic Eng., 1971, vol. 93, pp. 1291–95.

    Google Scholar 

  10. T. Nicholas: Air Force Materials Laboratory, Dayton, OH: personal communication, 2001.

  11. G. Subhash: JOM—J. Miner. Met. Mater. Soc., 1995, vol. 47 (5), pp. 55–58.

    CAS  Google Scholar 

  12. M.A. Meyers: Dynamic Behavior of Materials, Wiley Interscience, New York, NY, 1994.

    Google Scholar 

  13. K.T. Ramesh and S. Narasimhan: Int. J. Solids Struct., 1996, vol. 33 (25), pp. 3723–38.

    Article  Google Scholar 

  14. D. Jia and K. T. Ramesh: unpublished research, 2001.

  15. S. Yadav: Master’s Thesis, The Johns Hopkins University, Baltimore, MD, 1994.

    Google Scholar 

  16. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: Acta Mater., 1998, vol. 46 (3), pp. 1025–43.

    Article  CAS  Google Scholar 

  17. E.A. Anderson, D.C. Jillson, and S.R. Dunbar: J. Met., 1953, p. 1191.

  18. F.D. Rosi, C.A. Dube, and B.H. Alexander: J. Met., 1953, p. 257.

  19. F.D. Rosi: J. Met., 1954, p. 58.

  20. F.D. Rosi, F.C. Perkins, and L.L. Siegle: Trans. AIME, 1956, p. 115.

  21. U.F. Kocks and D.G. Westlake: Trans. TMS-AIME, 1967, vol. 239, pp. 1967–1107.

    Google Scholar 

  22. P.G. Partridge: Metall. Rev., 1967, p. 169.

  23. D.G. Westlake: Trans. TMS-AIME, 1967, vol. 239, p. 1101.

    CAS  Google Scholar 

  24. A.G. Crocker and M. Bevis: in The Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon Press, London, 1968.

    Google Scholar 

  25. H. Conrad and R. Jones, in The Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon Press, London, 1968.

    Google Scholar 

  26. K. Okazaki and H. Conrad: Acta Metall., 1973, vol. 21, pp. 1117–29.

    Article  CAS  Google Scholar 

  27. V. Ramachandran, A.T. Santhanam, and R.E. Reed-Hill: Ind. J. Technol., 1973, vol. 11, pp. 485–92.

    CAS  Google Scholar 

  28. T.S. DeSisto: in High Speed Testing I, A.G.H. Dietz and F.R. Eirich, eds., Interscience, New York, NY, 1960, pp. 97–106.

    Google Scholar 

  29. H. Conrad: Acta Metall., 1966, vol. 14, p. 1631.

    Article  CAS  Google Scholar 

  30. R.N. Orava, G. Stone, and H. Conrad: Trans. Am. Soc. Met., 1966, vol. 59, pp. 171–84.

    CAS  Google Scholar 

  31. A.T. Santhanam, V. Ramachandran, and R.E. Reed-Hill: Metall. Trans., 1970, vol. 1, pp. 2593–98.

    Google Scholar 

  32. T. Tanaka and H. Conrad: Acta Metall., 1972, vol. 20, p. 1019.

    Article  CAS  Google Scholar 

  33. S.P. Agrawal, G.A. Sargent, and H. Conrad: Metall. Trans. A, 1973, vol. 4, p. 2613.

    CAS  Google Scholar 

  34. B. de Meester, M. Doner, and H. Conrad: Z. Metallkd., 1973, p. 775.

  35. K. Okazaki, T. Odawara, and H. Conrad: Scripta Metall., 1977, vol. 11, p. 437.

    Article  CAS  Google Scholar 

  36. J.C.C. Hsu and R.J. Clifton: J. Mech. Phys. Solids, 1974, vol. 22, pp. 233–53.

    Article  Google Scholar 

  37. J.C.C. Hsu and R.J. Clifton: J. Mech. Phys. Solids, 1974, vol. 22, pp. 255–66.

    Article  Google Scholar 

  38. A. Gilat and R.J. Clifton: J. Mech. Phys. Solids, 1985, vol. 33 (3), pp. 263–84.

    Article  Google Scholar 

  39. D.W. Nicholson: in Shock Waves in Condensed Matter—1983, J.R. Asay, R.A. Graham, and G.K. Straub, eds., North-Holland, Amsterdam, 1984, pp. 141–44.

    Google Scholar 

  40. G.I. Kanel, S.V. Razorenov, and V.E. Fortov: Sov. Phys. Tech. Phys., 1986, vol. 31, pp. 354–55.

    Google Scholar 

  41. J.S. Gyanchandani, S.C. Gupta, S.K. Sikka, and R. Chidambaram: in Shock Compression of Condensed Matter—1989, S.C. Schmidt, J.N. Johnson, and L.W. Davison, eds., Elsevier, Amsterdam, 1990, pp. 131–34.

    Google Scholar 

  42. J. Harding: Arch. Mech., 1975, vol. 27, pp. 715–32.

    CAS  Google Scholar 

  43. G.L. Wulf: J. Mech. Sci., 1979, vol. 21, pp. 713–18.

    Article  Google Scholar 

  44. S. Leclercq, C. Nguy, and P. Bensussan: International Conference on Mechanical Properties of Materials at High Rates of Strain, Institute of Physics Conf. Ser. No. 102, Oxford, United Kingdom, 1989.

  45. K. Mimura and Y. Tomita: J. Phys. IV, 1991, vol. C3, pp. 813–20.

    Google Scholar 

  46. S. Gabelotaud, C. Nguy, P. Bensussan, M. Berveiller, and P. Lipinski: in Shock-Wave and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, New York, NY, 1992, pp. 161–70.

    Google Scholar 

  47. S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas: Metall. Mater. Trans. A, 1993, vol. 24, pp. 2513–20.

    Google Scholar 

  48. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: The Johannes Weertman Symp., R.J. Arsenault et al., eds., TMS, Warrendale, PA, 1996, pp. 437–48.

    Google Scholar 

  49. D.J. Smith and R.L. Jones: Mech. Mater., 1989, vol. 8, pp. 219–35.

    Article  Google Scholar 

  50. M.A. Meyers, G. Subhash, B.K. Kad, and L. Prasad: Mech. Mater., 1994, vol. 17, pp. 175–93.

    Article  Google Scholar 

  51. Y. Yang, X.-M. Zhang, Z.-H. Li, and Q.-Y. Li: Scripta Metall. Mater., 1995, vol. 33, pp. 219–24.

    Article  CAS  Google Scholar 

  52. S. Yadav and K.T. Ramesh: Mater. Sci. & Eng. A, 1998, vol. 246, pp. 265–81.

    Article  Google Scholar 

  53. G. Subhash, G. Ravichandran, and B.J. Pletka: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1479–87.

    Article  CAS  Google Scholar 

  54. R. Hill: The Mathematical Theory of Plasticity, Oxford Science Publications, London, 1989.

    Google Scholar 

  55. R.J. Clifton: Trans. ASME: J. Appl. Mech., 1983, vol. 50, pp. 941–52.

    Article  Google Scholar 

  56. G.C. Kaschner and G.T. Gray III: Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2000, vol. 31A (8), pp. 1997–2003.

    Article  CAS  Google Scholar 

  57. U.F. Kocks, C.N. Tome, and H.R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1988.

    Google Scholar 

  58. C.N. Tome, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner: Acta Mater., 2001, vol. 49, pp. 3085–96.

    Article  CAS  Google Scholar 

  59. H. Conrad, M. Doner, and B. de Meester: in Titanium Science & Technology, R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973, pp. 969–1005.

    Google Scholar 

  60. S. Naka, A. Lasalmonie, P. Costa, and L.P. Kubin: Phil. Mag. A, 1988, vol. 57, pp. 717.

    CAS  Google Scholar 

  61. S. Naka, L.P. Kubin, and C. Perrier: Phil. Mag. A, 1991, vol. 63 (5), pp. 1035–43.

    CAS  Google Scholar 

  62. D. Lee: Metall. Trans., 1970, vol. 1 (6), p. 1607.

    CAS  Google Scholar 

  63. S.G. Song and G.T. Gray III: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2665–75.

    CAS  Google Scholar 

  64. L.P. Koshmanov, V.D. Rudnev, O.A. Nechaeva, and N.B. Sokolov: Atom. Energy, 1996, vol. 81 (2), pp. 601–04.

    Article  Google Scholar 

  65. G.E. Das and T.E. Mitchell: Metall. Trans., 1973, vol. 4, pp. 1405–13.

    CAS  Google Scholar 

  66. A.M. Lennon and K.T. Ramesh: Int. J. Plasticity, 1998, vol. 14 (12) pp. 1279–92.

    Article  Google Scholar 

  67. A.M. Lennon and K.T. Ramesh: Int. J. Plasticity, 2001, in press.

  68. A.M. Lennon: Ph.D. Dissertation, The Johns Hopkins University, Baltimore, MD, 1998.

    Google Scholar 

  69. Y.L. Bai and B. Dodd: Adiabatic Shear Localization: Occurrence, Theories and Applications, Pergamon, Oxford, United Kingdom, 1992.

    Google Scholar 

  70. M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, p. 409.

    Google Scholar 

  71. M.H. Yoo and J.K. Lee: Phil. Mag. A, 1991, vol. 63 (5), p. 987.

    CAS  Google Scholar 

  72. S.G. Song and G.T. Gray III: Acta Metall. Mater., 1995, vol. 43, p. 2325.

    Article  CAS  Google Scholar 

  73. S.G. Song and G.T. Gray III: Acta Metall. Mater., 1995, 43 (6), pp. 2339–50.

    Article  CAS  Google Scholar 

  74. M.H. Yoo, J.R. Morris, K.M. Ho, and S.R. Agnew: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 813–22.

    CAS  Google Scholar 

  75. L.C. Chhabildas, L.M. Barker, J.R. Asay, and T.G. Trucano: in Shock Compression of Condensed Matter—1989, S.C. Schmidt, J.N. Johnson, and L.W. Davidson, eds., Elsevier, Amsterdam, 1990, pp. 429–32.

    Google Scholar 

  76. A. Marchand and J. Duffy: J. Mech. Phys. Solids, 1988, vol. 36 (3), pp. 251–83.

    Article  Google Scholar 

  77. M. Zhou, G. Ravichandran, and A.J. Rosakis: J. Mech. Phys. Solids, 1996, vol. 44, pp. 981–1006.

    Article  CAS  Google Scholar 

  78. L.W. Meyer and S. Manwaring: in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel-Dekker, New York, NY, 1986, pp. 657–74.

    Google Scholar 

  79. V.F. Nesterenko, M.A. Meyers, and T.W. Wright: in Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Elsevier, Amsterdam, 1995, pp. 397–404.

    Google Scholar 

  80. D.R. Chichili and K.T. Ramesh: J. Appl. Mech., 1999, vol. 66, pp. 10–20.

    CAS  Google Scholar 

  81. R.E. Winter: Phil. Mag., 1975, vol. 31, pp. 765–73.

    CAS  Google Scholar 

  82. H.A. Grebe, H.-R. Pak, and M.A. Meyers: Metall. Trans. A, 1985, vol. 16A, pp. 761–75.

    CAS  Google Scholar 

  83. M.A. Mogilevskii, T.O. Sanchaa, and Y.D. Shishkin: J. Appl. Mech. Tech. Phys., 1986, vol. 27, pp. 430–32.

    Article  Google Scholar 

  84. H.-R. Pak, C.L. Wittman, and M.A. Meyers: in Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel-Dekker, New York, NY, 1986, pp. 749–60.

    Google Scholar 

  85. K.P. Staudhammer and A.J. Gray: Inst. Phys. Conf. Ser., 1989, vol. 102, pp. 111–18.

    CAS  Google Scholar 

  86. W.H. Holt, W. Mock, W.G. Soper, C.S. Coffey, V. Ramachandran, and R.W. Armstrong: in Shock Waves in Condensed Matter—1989, S.C. Schmidt, J.N. Johnson, and L.W. Davidson, eds., Elsevier, Amsterdam, 1990, pp. 915–18.

    Google Scholar 

  87. V.K. Satish, Y.V.R.K. Prasad, and S.K. Biswas: Metall. Trans. A, 1993, vol. 24A, p. 2513.

    Google Scholar 

  88. J.Y. Sheikh-Ahmad and J.A. Bailey: Trans. ASME: J. Eng. Mater. Technol., 1995, vol. 117, pp. 255–59.

    Article  Google Scholar 

  89. Y. Yang, Z. Xinming, L. Zhenghua and L. Qingyun: Acta Mater., 1996, vol. 44, pp. 561–65.

    Article  CAS  Google Scholar 

  90. D.R. Chichili: Ph.D. Dissertation, The Johns Hopkins University, Baltimore, MD, 1997.

    Google Scholar 

  91. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: unpublished research, 2001.

  92. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: unpublished research, 2001.

  93. K.T. Ramesh, S. Yaday, and J.A. Davis: in Tungsten and Tungsten Alloys 1992, A. Bose and R.J. Dowding, Metal Powder Industries Federation, Princeton, NJ, 1993, pp. 299–306.

    Google Scholar 

  94. M. da Silva and K.T. Ramesh: Mater. Sci. Eng. A, 1997, vol. 232, pp. 11–22.

    Article  Google Scholar 

  95. A.U. Sulijoadikusumo and O.W. Dillon, Jr.: in Metallurgical Effects at High Strain Rates, R.W. Rohde et al., eds., Plenum, New York, NY, 1973, pp. 501–18.

    Google Scholar 

  96. Y. Me-Bar and D. Shechtman: Mater. Sci. Eng., 1983, vol. 58, pp. 181–88.

    Article  Google Scholar 

  97. S.P. Timothy: Ph.D. Dissertation, Cambridge University, Cambridge, NY, 1983.

    Google Scholar 

  98. S.P. Timothy and I.M. Hutchings: Inst. Phys. Conf. Ser., 1984, vol. 70, pp. 397–404.

    Google Scholar 

  99. S.P. Timothy and I.M. Hutchings: Proc. 8th Int. Conf. on High Energy Rate Fabrication, ASME, New York, NY, 1984, pp. 31–40.

    Google Scholar 

  100. R.L. Woodward, B.J. Baxter, and N.V.Y. Scarlett: Inst. Phys. Conf. Ser., 1984, vol. 70, pp. 525–32.

    Google Scholar 

  101. L.W. Meyer and C.Y. Chiem: in Titanium Science & Technology, G. Lutjering, U. Zwicker, and W. Bunk, eds., Deutsche Gessellschaft fur Metallkunde, 1985, p. 1907.

  102. S.P. Timothy and I.M. Hutchings: Acta Metall., 1985, vol. 33, No. 4, pp. 667–76.

    Article  CAS  Google Scholar 

  103. S.P. Timothy and I.M. Hutchings: Mater. Sci. Technol., 1985, vol. 1, pp. 526–30.

    CAS  Google Scholar 

  104. S.P. Timothy and I.M. Hutchings: J. Mater. Sci. Lett., 1986, vol. 5, pp. 453–54.

    Article  CAS  Google Scholar 

  105. L.L. Wang, W.X. Lu, S.S. Hu and Z.P. Tang: in Macro-and Micro-Mechanics of High Velocity Deformation and Fracture, K. Kawata and J. Shiori, eds., Springer-Verlag, Berlin, 1987, pp. 395–406.

    Google Scholar 

  106. V. Ramachandran, X.J. Zhang, R.W. Armstrong, W.H. Holt, W. Mock, W.G. Soper, and C.S. Coffey: in Microstructure/Property Relationships in Titanium Alloys and Titanium Aluminides, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 647–64.

    Google Scholar 

  107. W.H. Holt, W. Mock, W.G. Soper, C.S. Coffey, V. Ramachandran, and R.W. Armstrong: in Shock-Wave and High-Strain-Rate Phenomenain Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel-Dekker, New York, NY, 1992, pp. 629–36.

    Google Scholar 

  108. Y.L. Bai, Q. Xue, Y.B. Xu, and L. Shen: Mech. Mater., 1994, vol. 17, pp. 155–64.

    Article  Google Scholar 

  109. S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2173–80.

    CAS  Google Scholar 

  110. D.C. Swift: in High Pressure Science and Technology 1993, S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, eds., American Institute of Physics, New York, 1994, pp. 1005–08.

    Google Scholar 

  111. X.Y. Wu and K.T. Ramesh: Johns Hopkins, unpublished research, 2001.

  112. D. Jia and K.T. Ramesh: Johns Hopkins, unpublished research, 2001.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Defect Properties and Mechanical Behavior of HCP Metals and Alloys” at the TMS Annual Meeting, February 11–15, 2001, in New Orleans, Louisiana, under the auspices of the following ASM committees: Materials Science Critical Technology Sector, Structural Materials Division, Electronic, Magnetic & Photonic Materials Division, Chemistry & Physics of Materials Committee, Joint Nuclear Materials Committee, and Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, K.T. Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys. Metall Mater Trans A 33, 927–935 (2002). https://doi.org/10.1007/s11661-002-0162-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0162-x

Keywords

Navigation