Skip to main content
Log in

Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical behavior of Sn-rich solder/Cu joints is highly sensitive to processing variables such as solder reflow time, cooling rate, and subsequent thermal aging. In this article, we focus on the lap shear behavior of Sn-3.5Ag/Cu joints as a function of solder yield strength and intermetallic thickness. Experimental results showed that the shear strength of the solder joints is primarily controlled by the mechanical properties of the solder, and not the intermetallic thickness. The thickness of intermetallic, however, controlled the fracture mode of the solder joints. At intermetallic thicknesses greater than 20 µm, brittle fracture between Cu6Sn5 and Cu3Sn was the most common failure mechanism. Finite-element simulations were carried out to evaluate the effect of solder properties and of intermetallic thickness and morphology on lap shear behavior. The finite-element simulations corroborated the experimental findings, i.e., that increased solder strength results in increased joint strength. The simulations also showed that thicker intermetallics, especially of nodular morphology, yielded higher local plastic shear strain and work hardening rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray: Mater. Sci. Eng. R: Rep., 2000, vol. 27, pp. 95–141.

    Article  Google Scholar 

  2. E.P. Wood and K.L. Nimmo: J. Electron. Mater., 1994, vol. 23, pp. 709–13.

    CAS  Google Scholar 

  3. J. Glazer: J. Electron. Mater., 1994, vol. 23, pp. 693–700.

    CAS  Google Scholar 

  4. W. Yang, L.E. Felton, and R.W. Messler: J. Electron. Mater., 1995, vol. 24, pp. 1465–72.

    CAS  Google Scholar 

  5. S. Yu, M. Hon, and M. Wang: J. Electron. Mater., 2000, vol. 29, pp. 237–43.

    CAS  Google Scholar 

  6. H. Lee, M. Chen, H. Jao, and T. Liao: Mater. Sci. Eng. A, 2003, vol. 358, pp. 134–41.

    Article  CAS  Google Scholar 

  7. D.R. Frear: JOM, 1996, vol. 48 (5), pp. 49–53.

    CAS  Google Scholar 

  8. D.R. Frear and P.T. Vianco: Metall. Trans. A, 1994, vol. 25A, pp. 1509–23.

    CAS  Google Scholar 

  9. C.W. Hwang and K. Suganuma: Mater. Sci. Eng. A, 2004, vol. 373, pp. 187–94.

    Article  CAS  Google Scholar 

  10. K.N. Tu and R.D. Thompson: Acta Metall., 1982, vol. 30 (5), pp. 947–52.

    Article  CAS  Google Scholar 

  11. X. Deng, G. Piotrowski, J.J. Williams, and N. Chawla: J. Electron. Mater., 2003, vol. 32, pp. 1403–13.

    Article  CAS  Google Scholar 

  12. K.H. Prakash and T. Sritharan: Acta Mater., 2001, vol. 49, pp. 2481–89.

    Article  CAS  Google Scholar 

  13. W.K. Choi and H.M. Lee: J. Electron. Mater., 2000, vol. 29, pp. 1207–13.

    Article  CAS  Google Scholar 

  14. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian: J. Electron. Mater., 2000, vol. 29, pp. 1241–48.

    Article  CAS  Google Scholar 

  15. D. Ma, W.D. Wang, and S.K. Lahiri: J. Appl. Phys., 2002, vol. 91, pp. 3312–17.

    Article  CAS  Google Scholar 

  16. C.R. Kao: Mater. Sci. Eng., 1997, vol. A238, pp. 196–201.

    CAS  Google Scholar 

  17. A. Hayashi, C.R. Kao, and Y.A. Chang: Scripta Mater., 1997, vol. 37, pp. 393–98.

    Article  CAS  Google Scholar 

  18. S. Chada, R.A. Fournelle, W. Laub, and D. Shangguan: J. Electron. Mater., 2000, vol. 29, pp. 1214–21.

    Article  CAS  Google Scholar 

  19. Z. Mei, A.J. Sunwoo, and J.W. Morris, Jr.: Metall. Trans. A, 1992, vol. 23A, pp. 857–64.

    CAS  Google Scholar 

  20. W.K. Choi and H.M. Lee: J. Electron. Mater., 2000, vol. 29, pp. 1207–13.

    Article  CAS  Google Scholar 

  21. Y.C. Chan, A.C.K. So, and J.K.L. Lai: Mater. Sci. Eng. B, 1998, vol. 55, pp. 5–13.

    Article  Google Scholar 

  22. H.L.J. Pang, K.H. Tan, X.W. Shi, and Z.P. Wang: Mater. Sci. Eng. A, 2001, vol. 307, pp. 42–50.

    Article  Google Scholar 

  23. Hui-Wei Miao and Jenq-Gong Duh: Mater. Chem. Phys., 2001, vol. 71, pp. 255–71.

    Article  CAS  Google Scholar 

  24. F. Ochoa, J.J. Williams, and N. Chawla: JOM, 2003, vol. 55 (6), pp. 56–60.

    CAS  Google Scholar 

  25. F. Ochoa, J.J. Williams, and N. Chawla: J. Electron. Mater., 2003, vol. 32, pp. 1414–20.

    Article  CAS  Google Scholar 

  26. P. Protsenko, A. Terlain, V. Traskine, and N. Eustathopoulos: Scripta Mater., 2001, vol. 45, pp. 1439–45.

    Article  CAS  Google Scholar 

  27. R.E. Pratt, E.I. Stromswold, and D.J. Quesnel: J. Electron. Mater., 1994, vol. 23 (4), pp. 375–82.

    CAS  Google Scholar 

  28. C.K. Alex and Y.C. Chan: IEEE Trans. CPMT-B, 1996, vol. 19 (3), pp. 661–68.

    Google Scholar 

  29. P.L. Tu, Y.C. Chan, and J.K.L. Lai: IEEE Trans. CPMT-B, 1997, vol. 20 (1), pp. 87–93.

    CAS  Google Scholar 

  30. W.W. Mullins: J. Appl. Phys., 1957, vol. 28, pp. 333–39.

    Article  CAS  Google Scholar 

  31. R.J. Fields and S.R. Low: http://www.metallurgy.nist.gov/mechanical_properties/solder_paper.html.

  32. Y.C. Chan, D.J. Xie, and J.K.L Lai: Mater. Sci. Eng. B, 1996, vol. 38, pp. 53–61.

    Article  Google Scholar 

  33. B.A. Cook, I.E. Anderson, J.L. Harringa, R.L. Terpstra, J.C. Foley, O. Unal, and F.C. Laabs: J. Electron. Mater., 2001, vol. 30, pp. 1214–21.

    CAS  Google Scholar 

  34. T. Lee, J. Lee, and I. Jung: Microelectronics and Reliability, 1998, vol. 38 (12), pp. 1941–47.

    Article  Google Scholar 

  35. T. Reinikainen, M. Poech, M. Krumm, and J. Kivilahti: Trans. ASME, 1998, vol. 120, pp. 106–13.

    Article  Google Scholar 

  36. E.P. Busso, M. Kitano, and T. Kumazawa: ASME J. Electron. Packaging, 1994, vol. 116, pp. 6–15.

    Google Scholar 

  37. N. Paydar, Y. Tong, and H.U. Akay: ASME J. Electron. Packaging, 1994, vol. 116, pp. 265–73.

    Google Scholar 

  38. X. Deng: Arizona State University, Tempe, AZ, unpublished research, 2004.

  39. X. Deng, M. Koopman, N. Chawla, and K.K. Chawla: Mater. Sci. Eng., 2004, vol. 364, pp. 241–43.

    Google Scholar 

  40. X. Deng, N. Chawla, K.K. Chawla, and M. Koopman: Acta Mater., 2004, vol. 52, pp. 4291–4303.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, X., Sidhu, R.S., Johnson, P. et al. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints. Metall Mater Trans A 36, 55–64 (2005). https://doi.org/10.1007/s11661-005-0138-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0138-8

Keywords

Navigation