Skip to main content

Advertisement

Log in

Quantitative analysis on hydrogen trapping of TiC particles in steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The change in the hydrogen-trapping behavior of a TiC particle accompanying its coherent to incoherent interfacial-character transition in a 0.05C-0.20Ti-2.0Ni steel that was quenched and tempered in a partially protective argon atmosphere and in ultrahigh vacuum (UHV) has been studied by thermal desorption spectrometry (TDS). The results indicated that (semi)coherent TiC precipitates demonstrate distinctly different hydrogen-trapping features from that of incoherent TiC particles with respect to hydrogen capacity, interaction energy with hydrogen, locations available for hydrogen occupation, and the capability of hydrogen absorption from the environment. The broad (semi)coherent interface of the disc-shaped (semi)coherent TiC precipitate does not trap hydrogen during tempering in a partially protected argon atmosphere, but traps hydrogen during cathodic charging at room temperature. The semicoherent interface traps 1.3 atoms/nm2 of hydrogen at the core of the misfit dislocation with short-time charging (1 hour), which is characterized by a desorption activation energy of 55.8 kJ/mol. The side interface of the (semi)coherent TiC precipitate acts like the broad interface when the precipitate is small. As the precipitate grows, the side interface gradually loses its coherency and results in a simultaneous increase in the trapping activation energy and the binding energy. An increase in the trapping activation energy, i.e., the energy barrier for trapping, makes hydrogen trapping more difficult in cathodic charging at room temperature, while an increase in the binding energy enhances the capability of hydrogen absorption from the atmosphere during heat treatment. An incoherent TiC particle is not able to trap hydrogen during cathodic charging at room temperature due to its high energy barrier for trapping, but absorbs hydrogen during heat treatment at high temperatures. The amount of hydrogen that is trapped by incoherent TiC particles depends on their volume, which strongly indicates that incoherent TiC particles trap hydrogen within them rather than at the particle/matrix interface. Octahedral carbon vacancies are supposedly the hydrogen trap sites in incoherent TiC particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  Google Scholar 

  2. G.M. Pressouyre and I.M. Bernstein: Acta Metall., 1979, vol. 27, pp. 89–100.

    Article  CAS  Google Scholar 

  3. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1981, vol. 9A, pp. 835–44.

    Google Scholar 

  4. H.G. Lee and J.Y. Lee: Acta Metall., 1984, vol. 32, pp. 131–36.

    Article  CAS  Google Scholar 

  5. S.M. Lee and J.Y. Lee: Acta Metall., 1987, vol. 35, pp. 2695–2700.

    Article  CAS  Google Scholar 

  6. M.F. Stevens and I.M. Bernstein: Metall. Trans. A, 1989, vol. 20A, pp. 909–19.

    CAS  Google Scholar 

  7. A. Turnbull, R.G. Ballinger, I.S. Hwang, M.M. Morra, M. Psaila-Dombrowski, and R.M. Gates: Metall. Trans. A, 1992, vol. 23A, pp. 3231–44.

    CAS  Google Scholar 

  8. R. Valentini, A. Solina, S. Matera, and P. de Gregorio: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3773–80.

    Article  CAS  Google Scholar 

  9. B.G. Pound: Acta Metall., 1990, vol. 38, pp. 2373–81.

    Article  CAS  Google Scholar 

  10. B.G. Pound: Acta Metall., 1991, vol. 39, pp. 2099–105.

    Article  CAS  Google Scholar 

  11. A. Asaoka, G. Lapasset, M. Aucouturier, and P. Lacombe: Corrosion, 1978, vol. 34, pp. 39–47.

    CAS  Google Scholar 

  12. F.G. Wei, T. Hara, T. Tsuchida and K. Tsuzaki: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 539–47.

    CAS  Google Scholar 

  13. F.G. Wei, T. Hara, and K. Tsuzaki: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 587–97.

    CAS  Google Scholar 

  14. F.G. Wei and K. Tsuzaki: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3155–63.

    Article  CAS  Google Scholar 

  15. G.M. Pressouyre: Metall. Trans. A, 1979, vol. 10A, pp. 1571–73.

    CAS  Google Scholar 

  16. T.E. Perez and J. Ovejero-Gracia: Scripta Metall., 1982, vol. 16, pp. 161–64.

    Article  CAS  Google Scholar 

  17. J. Ovejero-Garcia: J. Mater. Sci., 1985, vol. 20, pp. 2623–29.

    Article  CAS  Google Scholar 

  18. M.I. Luppo and J. Ovejero-Garcia: J. Mater. Sci. Lett., 1995, vol. 14, pp. 682–84.

    Article  Google Scholar 

  19. H.K. Yalci and D.V. Edmonds: Mater. Characterization, 1995, vol. 34, pp. 97–104.

    Article  CAS  Google Scholar 

  20. W.C. Luu and J.K. Wu: Mater. Lett., 1995, vol. 24, pp. 175–79.

    Article  Google Scholar 

  21. A. Nagao, S. Kuramoto, K. Ichitani, and M. Kanno: Scripta Metall., 2001, vol. 45, pp. 1227–32.

    Article  CAS  Google Scholar 

  22. T. Schober and C. Dieker: Metall. Trans. A, 1983, vol. 14A, pp. 2440–42.

    CAS  Google Scholar 

  23. H. Saito, T. Hishi, and T. Misawa: Mater. Trans. JIM, 1996, vol. 37, pp. 373–78.

    Google Scholar 

  24. K. Takai, J. Seki, G. Yamauchi, and Y. Homma: J. Jpn. Inst. Met., 1994, vol. 58, pp. 1380–85.

    CAS  Google Scholar 

  25. A.M. Brass, J. Chene, and A. Boutry-Forveille: Corr. Sci., 1996, vol. 38, pp. 569–85.

    Article  CAS  Google Scholar 

  26. K. Takai, Y. Chiba, K. Noguchi, and A. Nozue: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2659–65.

    Article  CAS  Google Scholar 

  27. S. Fujimoto, T. Shibata, and T. Shono: Corr. Sci., 1991, vol. 32, pp. 669–72.

    Article  CAS  Google Scholar 

  28. T. Haruna, S. Ohtuska, and T. Shibata: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 482–88.

    CAS  Google Scholar 

  29. G. Razzini, S. Maffi, G. Mussatia, and L.P. Bicelli: Corr. Sci., 1995, vol. 37, pp. 1131–41.

    Article  CAS  Google Scholar 

  30. G. Razzini, M. Cabrini, S. Maffi, G. Mussatia, and L.P. Bicelli: Corr. Sci., 1999, vol. 41, pp. 203–08.

    Article  CAS  Google Scholar 

  31. W.J. Liu and J.J. Jonas: Metall. Trans. A, 1988, vol. 19A, pp. 1415–24.

    CAS  Google Scholar 

  32. S. Sundman, B. Jansson, and J.O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  33. Q.G. Grindstaff, J.C. Franklin, and J.L. Marshall: Metals Handbook, 9th ed., ASM, Metals Park, OH, 1986, pp. 152–57.

    Google Scholar 

  34. K. Ono and M. Meshii: Acta Metall., 1992, vol. 40, pp. 1357–64.

    Article  CAS  Google Scholar 

  35. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  36. H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  37. K. Kiuchi and R.B. McLellan: Acta Metall., 1983, vol. 31, pp. 961–84.

    Article  CAS  Google Scholar 

  38. R.G. Baker and J. Nutting: Precipitation Processes in Steels, ISI Special Report, Iron and Steel Institute, London, 1959, vol. 64, pp. 1–22.

    CAS  Google Scholar 

  39. F.G. Wei, T. Hara, and K. Tsuzaki: Phil. Mag., 2004, vol. 84, pp. 1735–51.

    Article  CAS  Google Scholar 

  40. J.Y. Lee and J.L. Lee: Phil. Mag. A, 1987, vol. 56, pp. 293–309.

    CAS  Google Scholar 

  41. W.Y. Choo and J.Y. Lee: J. Mater. Sci., 1982, vol. 17, pp. 1930–38.

    Article  CAS  Google Scholar 

  42. F.G. Wei and K. Tsuzaki: unpublished research.

  43. F.G. Wei and K. Tsuzaki: Scripta Mater., 2005, vol. 52, pp. 467–72.

    Article  CAS  Google Scholar 

  44. M. Nagumo, K. Takai, and N. Okuda: J. Alloys Compounds, 1999, vols. 293–295, pp. 310–16.

    Article  Google Scholar 

  45. M. Nagumo, M. Nakamura, and K. Takai: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 339–47.

    Article  CAS  Google Scholar 

  46. Y. Hayashi and W.M. Shu: Mater. Trans. JIM, 1993, vol. 34, pp. 483–88.

    CAS  Google Scholar 

  47. H. Hagi: Mater Trans JIM, 1992, vol. 33, pp. 472–79.

    Google Scholar 

  48. T. Kushida, H. Matsumoto, N. Kuratomi, T. Tsumura, F. Nakasato, and T. Kudo: Tetsu-to-Hagané, 1996, vol. 82, pp. 297–302.

    CAS  Google Scholar 

  49. D.G. Enos and J.R. Scully: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1151–66.

    CAS  Google Scholar 

  50. K. Takai and R. Watanuki: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 520–26.

    CAS  Google Scholar 

  51. H. Hagi and Y. Hayashi: J. Jpn. Inst. Met., 1993, vol. 57, pp. 864–69.

    CAS  Google Scholar 

  52. G.W. Hong and J.Y. Lee: J. Mater. Sci., 1983, vol. 18, pp. 271–77.

    Article  CAS  Google Scholar 

  53. J.C. Charbonnier, H. Margot-Marette, A.M. Brass, and M. Aucouturier: Metall. Trans. A, 1985, vol. 16A, pp. 935–44.

    CAS  Google Scholar 

  54. T. Tsuchida, T. Hara, and K. Tsuzaki: Tetsu-to-Hagané, 2002, vol. 88, pp. 771–78.

    CAS  Google Scholar 

  55. J.L. Lee and J.Y. Lee: Metal Sci., 1983, vol. 7, pp. 426–32.

    Article  Google Scholar 

  56. J.O’M. Bockris, W. Beck, M.A. Genshaw, P.K. Subramanyan, and F.S. Williams: Acta Metall., 1971, vol. 19, pp. 1209–18.

    Article  CAS  Google Scholar 

  57. W.W. Gerberich, T. Livne, X.F. Chen, and M. Kaczorowski: Metall. Trans. A, 1988, vol. 19A, pp. 1319–34.

    CAS  Google Scholar 

  58. D.M. Symons and A.W. Thompson: Metall. Trans. A, 1996, vol. 27A, pp. 101–10.

    CAS  Google Scholar 

  59. S. Takagi, T. Inoue, T. Hara, M. Hyakawa, K. Tsuzaki, and T. Takahashi: Tetsu-to-Hagané, 2000, vol. 86, pp. 689–95.

    CAS  Google Scholar 

  60. A. Seeger: Phys. Lett., 1976, vol. 58A, pp. 137–38.

    CAS  Google Scholar 

  61. H.D. Carstanjen and R. Sizmann: Phys. Lett., 1972, vol. 40A, pp. 93–94.

    Google Scholar 

  62. S.T. Picraux and F.L. Vook: Phys. Rev. Lett., 1974, vol. 33, pp. 1216–20.

    Article  CAS  Google Scholar 

  63. E. Yagi, T. Kobayashi, S. Nakamura, Y. Fukai, and K. Watanabe: Phys. Rev. B, 1985, vol. 31, pp. 1640–42.

    Article  CAS  Google Scholar 

  64. E. Yagi, S. Nakamura, T. Kobayashi, K. Watanabe, and Y. Fukai: J. Phys. Soc. Jpn., 1985, vol. 54, pp. 1855–60.

    Article  CAS  Google Scholar 

  65. E. Yagi, S. Nakamura, T. Kobayashi, F. Kano, K. Watanabe, Y. Fukai, and T. Osaka: J. Phys. Soc. Jpn., 1986, vol. 55, pp. 2671–75.

    Article  CAS  Google Scholar 

  66. S. Orimo, T. Matsushima, and H. Fujii: J. Appl. Phys., 2001, vol. 90, pp. 1545–49.

    Article  CAS  Google Scholar 

  67. X.Y. Huang, W. Mader, and R. Kirchheim: Acta Metall. Mater., 1991, vol. 39, pp. 893–907.

    Article  CAS  Google Scholar 

  68. J. Emsley: The Elements, 2nd ed., Clarendon Press, London, 1991.

    Google Scholar 

  69. P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for International Phases, 2nd ed., ASM, Materials Park, OH, 1991.

    Google Scholar 

  70. H. Goretzki: Phys. Stat. Solidi, 1967, vol. 20, pp. K141-K143.

    CAS  Google Scholar 

  71. S. Nagata, S. Yamaguchi, H. Naramoto, and Y. Kazumata: Nucl. Instrum. Methods Phys. Res., 1990, vol. B48, pp. 231–34.

    CAS  Google Scholar 

  72. E.K. Storms: The Refractory Carbides, Academic Press, New York, NY, 1967, pp. 1–17.

    Google Scholar 

  73. P.S. Bell and M.H. Lewis: Phil. Mag., 1971, vol. 24, pp. 1247–51.

    CAS  Google Scholar 

  74. J. Billingham, P.S. Bell, and M.H. Lewis: Acta Cryst. A, 1972, vol. A28, pp. 602–06.

    Article  Google Scholar 

  75. V. Moisy-Maurice, N. Lorenzelli, C.H. de Novion, and P. Convert: Acta Metall., 1982, vol. 30, pp. 1769–79.

    Article  CAS  Google Scholar 

  76. S. Tsurekawa, H. Kurishita, and H. Yoshinaga: J. Nucl. Mater., 1989, vol. 169, pp. 291–98.

    Article  CAS  Google Scholar 

  77. J. Bursik and G.C. Weatherly: Phys. Status Solidi (a), 1999, vol. 174, pp. 327–35.

    Article  CAS  Google Scholar 

  78. V.N. Lipatnikov, A. Kottar, L.V. Zueva, and A.I. Gusev: Inorg. Mater., 2000, vol. 36, pp. 155–61.

    Article  CAS  Google Scholar 

  79. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  80. R. Kirchheim: Prog. Mater. Sci., 1988, vol. 32, pp. 261–325.

    Article  CAS  Google Scholar 

  81. R. Kirchheim and U. Stolz: Acta Metall., 1987, vol. 35, pp. 281–91.

    Article  CAS  Google Scholar 

  82. P.A. Redhead: Vacuum, 1962, vol. 12, pp. 203–11.

    Article  CAS  Google Scholar 

  83. A.W. Coats and J.P. Redfern: Nature, 1964, vol. 201, pp. 68–69.

    Article  CAS  Google Scholar 

  84. S.M. Lee and J.Y. Lee: Metall. Trans. A, 1986, vol. 17A, pp. 181–87.

    CAS  Google Scholar 

  85. J. Volkl and G. Alefeld: in Hydrogen in Metals, G. Alefeld and J. Volkl, eds., Springer-Verlag, New York, NY, 1978, pp. 321–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, F.G., Tsuzaki, K. Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall Mater Trans A 37, 331–353 (2006). https://doi.org/10.1007/s11661-006-0004-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0004-3

Keywords

Navigation