Skip to main content
Log in

Patterns of Recrystallization in Warm- and Hot-Deformed AA6022

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AA6022 samples were deformed at different temperatures and strain rates. Although deformation was immediately followed by quenching, as-deformed samples, especially samples subjected to higher deformation temperatures, contained a finite percentage of statically recrystallized grains. Crystallographic texture and microtexture measurements were employed to bring out developments in deformed and recrystallized microstructures and to outline the overall patterns of recrystallization. The latter was best represented through the so-called nucleation factor, an estimate of an orientation-sensitive nucleation. For a given orientation, nucleation factors were measured as the number of recrystallized grains divided by the number of deformed bands. With an increase in deformation temperatures, the dominance in nucleation appeared to have changed from cube \( \left\{ {{\text{001}}} \right\}\left\langle {{\text{100}}} \right\rangle \) to particle-stimulated nucleation (PSN) to cube again and, finally, to no preference. Relative stored-energy differences, with respect to working temperatures, explain the observed patterns in the orientation-sensitive nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. A similar approach can be taken for the GAM, as well, with nearly identical results. However, the GOS involves significantly less computational time. Large subgrains also exist in a warm- or hot-deformed aluminum, but those typically have a significant (above 0.75-deg) GOS or the clear presence of low-angle (a misorientation of 1 to 15 deg) boundaries.

  2. In both cases, discrete data from the EBSD scans of deformed and recrystallized cube (within 20 deg of exact cube) were used. The large EBSD data were given appropriate rotations, so that exact orthorhombic rolling textures were obtained.

  3. The maxima in the recrystallized cube was at 400 °C (Figure 4(b)).

  4. It also needs to be pointed out that the AA6022 can have significant competitive grain growth at higher annealing temperatures.

  5. This may arise from the absence of particle deformation zones[11,29,51] or through changes in the solute and vacancy depletion[44] around second-phase particles.

References

  1. J. Hirsch, K. Lücke: Acta Metall., 1988, vol. 36, pp. 2863–82

    Article  CAS  Google Scholar 

  2. B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19

    Article  CAS  Google Scholar 

  3. C. Maurice, J.H. Driver: Acta Metall. Mater., 1993, vol. 41, pp. 1653–64

    Article  CAS  Google Scholar 

  4. I. Samajdar, P. Ratchev, B. Verlinden, E. Aernoudt: Acta Mater., 2001, vol. 49, pp 1759–69

    Article  CAS  Google Scholar 

  5. I.L. Dillamore, H. Katoh: Met. Sci., 1974, vol. 8, pp. 73–83

    CAS  Google Scholar 

  6. F. Basson, J.H. Driver: Acta Mater., 2000, vol. 48, pp. 2101–15

    Article  CAS  Google Scholar 

  7. L. Delannay, O.V. Mishin, D. Juul-Jensen, P. Vann-Houtte: Acta Mater., 2001, vol. 49, pp. 2441–51

    Article  CAS  Google Scholar 

  8. J.A. Wert, Q. Liu, N. Hansen: Acta Mater., 1997, vol. 45, pp. 2565–76

    Article  CAS  Google Scholar 

  9. W.C. Liu, J.G. Morris: Mater. Sci. Eng., A, 2004, vol. 380, pp. 147–54

    Article  CAS  Google Scholar 

  10. G.B. Sarma, B. Radhakrishnan: Mater. Sci. Eng., A, 2004, vol. 385, pp. 91–104

    Article  CAS  Google Scholar 

  11. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, UK, 2002

  12. B. Verlinden, J. Driver, I. Samajdar, R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, R.W. Cahn, ed., Elsevier, Amsterdam, 2007

    Google Scholar 

  13. J. Hjelen, R. Orsund, E. Nes: Acta Metall. Mater., 1991, vol. 39, pp. 1377–1404

    Article  CAS  Google Scholar 

  14. D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul-Jensen, M.E. Kasnner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollet: Mater. Sci. Eng., A, 1997, vol. 238, pp. 219–74

    Article  Google Scholar 

  15. B.J. Duggan, K. Lücke, G. Kohlhoff, C.S. Lee: Acta Metall. Mater., 1993, vol. 41, pp. 1921–27

    Article  CAS  Google Scholar 

  16. D. Juul-Jensen: Acta Metall. Mater., 1995, vol. 43, pp. 4117–29

    Article  Google Scholar 

  17. O. Engler, K. Lücke: Scripta Metall. Mater., 1992, vol. 27, pp. 1527–32

    Article  CAS  Google Scholar 

  18. R. Sebald, G. Gottstein: Acta Mater., 2002, vol. 50, pp. 1587–98

    Article  CAS  Google Scholar 

  19. T.J. Sabin, G. Winther, D. Juul-Jensen: Acta Mater., 2003, vol. 51, pp. 3999–4011

    Article  CAS  Google Scholar 

  20. J. Hirsch, E. Nes, K. Lücke: Acta Metall., 1987, vol. 35, pp. 427–38

    Article  CAS  Google Scholar 

  21. R.D. Doherty, K. Kashyap, S. Panchanadeeswaran: Acta Metall. Mater., 1993, vol. 41, pp. 3029–53

    Article  CAS  Google Scholar 

  22. O. Daaland, E. Nes: Acta Mater., 1996, vol. 44, pp. 1413–35

    Article  CAS  Google Scholar 

  23. H.E. Vatne, T. Furu, R. Ørsund, E. Nes: Acta Mater., 1996, vol. 44, pp. 4463–73

    Article  CAS  Google Scholar 

  24. I. Samajdar, R.D. Doherty: Acta Mater., 1998, vol. 46, pp. 3145–58

    Article  CAS  Google Scholar 

  25. G. Guiglionda, A. Borbely, J.H. Driver: Acta Mater., 2004, vol. 52, pp. 3413–23

    Article  CAS  Google Scholar 

  26. I. Samajdar, B. Verlinden, L. Rabet, P. Van-Houtte: Mater. Sci. Eng., A, 1999, vol. 266, pp. 146–54

    Article  Google Scholar 

  27. N. Rajamohan, J.A. Szpunar: Acta Mater., 2000, vol. 48, pp. 3327–40

    Article  Google Scholar 

  28. F.J. Humphreys: Acta Metall., 1977, vol. 25, pp. 1323–44

    Article  CAS  Google Scholar 

  29. F.J. Humphreys, P.N. Kalu: Acta Metall., 1987, vol. 35, pp. 2815–29

    Article  CAS  Google Scholar 

  30. M.G. Ardakani, F.J. Humphreys: Acta Metall. Mater., 1994, vol. 42, pp. 763–80

    Article  CAS  Google Scholar 

  31. R. Ørsund, E. Nes: Scripta Metall., 1988, vol. 22, pp. 671–76

    Article  Google Scholar 

  32. I. Samajdar, L. Rabet, B. Verlinden, P. Van-Houtte: ISIJ Int., 1998, vol. 38, pp. 539–46

    Article  CAS  Google Scholar 

  33. O. Engler, H.E. Vatne, E. Nes: Mater. Sci. Eng., A, 1996, vol. 205, pp. 187–98

    Article  Google Scholar 

  34. D. Juul-Jensen, N. Hansen, F.J. Humphreys: Acta Metall., 1985, vol. 33, pp. 2155–62

    Article  Google Scholar 

  35. M. Ferry, F.J. Humphreys: Acta Mater., 1996, vol. 44, pp. 3089–103

    Article  CAS  Google Scholar 

  36. A.A. Ridha, W.B. Hutchinson: Acta Metall., 1982, vol. 30, pp. 1929–39

    Article  CAS  Google Scholar 

  37. H. Weiland, J. Hirsch: Text. Microstruct., 1991, vols. 14–18, pp. 647–52

    Article  Google Scholar 

  38. M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399–424

    Article  CAS  Google Scholar 

  39. P. Van-Houtte: Acta Metall. Mater., 1995, vol. 43, pp. 2859–79

    Article  CAS  Google Scholar 

  40. H. Weiland, T.N. Rouns, J. Liu: Z. Metallkd., 1994, vol. 85, pp. 592–97

    CAS  Google Scholar 

  41. R.D. Doherty: Scripta Metall., 1985, vol. 19, pp. 927–30

    Article  CAS  Google Scholar 

  42. C.M. Sellars, W.J. McG. Tegart: Int. Metall. Rev., 1972, vol. 17, pp. 1–24

    CAS  Google Scholar 

  43. T. Petterson: Doctoral Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 1999

  44. N. Stanford, D. Dunne, M. Ferry: Mater. Sci. Eng., A, 2003, vol. 348, pp. 154–62

    Article  CAS  Google Scholar 

  45. H. Weiland: Proc. 21st Risø Int. Symp. Mater. Sci.: Recrystallization—Fundamental Aspects and Relations to Deformation Microstructures, N. Hansen, X. Huang, D. Juul-Jensen, E.M. Lauritsen, T. Leffers, W. Pantleon, T.J. Sabin, J.A. Wert, eds., Risø National Laboratory, Roskilde, Denmark, 2000, pp. 637–43

    Google Scholar 

  46. S. Panchanadeeswaran, R.D. Doherty, R. Becker: Acta Mater., 1996, vol. 44, pp. 1233–62

    Article  CAS  Google Scholar 

  47. P. Van-Houtte: MTM-FHM Software System, version 2, MTM, KULeuven, Belgium, 1995

  48. H.J. Bunge: Texture Analysis in Materials Science, Butterworths, London, 1982

    Google Scholar 

  49. M.H. Alvi, S. Cheong, H. Weiland, A.D. Rollet: Mater. Sci. Forum, 2004, vols. 467–470, pp. 357–62

    Google Scholar 

  50. M.A. Alvi: Doctoral Thesis, Carnegie Mellon University, Pittsburgh, PA, 2005

  51. T. Furu: Doctoral Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 1992

  52. O. Engler, J. Hirsch: Mater. Sci. Eng., A, 2002, vol. 336, pp. 249–62

    Article  Google Scholar 

  53. H. Weiland: Mater. Sci. Forum, 2004, vols. 467–470, pp. 349–56

    Article  Google Scholar 

  54. I. Gutierrez, F.R. Castro, J.J. Urcola, M. Fuentes: Mater. Sci. Eng., A, 1988, vol. 102, pp. 77–84

    Article  Google Scholar 

  55. R.A. Vandermeer, D. Juul-Jensen: Acta Mater., 2003, vol. 51, pp. 3005–18

    CAS  Google Scholar 

  56. G. Ibe, K. Lücke: in Recrystallisation, Grain Growth and Textures, H. Margolin, ed., ASM, Materials Park, OH, 1966, pp. 434–47

    Google Scholar 

  57. I. Samajdar, R.D. Doherty: Scripta Metall. Mater., 1995, vol. 32, pp. 845–50

    Article  CAS  Google Scholar 

  58. J.K. Mackenzie, M.J. Thompson: Biometrica, 1957, vol. 44, pp. 205–10

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from Alcoa. The authors also acknowledge the texture and microtexture measurements from the National Facility of Orientation Imaging Microscopy and X-Ray Bulk Texture at the Indian Institute of Technology, Bombay (a Department of Science and Technology-Intensification of Research in High Priority Area (DST-IRPHA) facility).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Manuscript submitted January 31, 2008.

Appendix

Appendix

Commercial microtexture programs such as the TSL advanced crystallographic technique have an ODF resolution higher than 1 deg. For the present study, a high-resolution binning of EBSD data was needed and the following procedure was adopted.

  1. (a)

    Data points were “visited” one by one and their intensities were estimated. The intensity, I, at a given point was obtained by counting all points within a 5-deg radius of the point. This was normalized by the average intensity, I avg, which is the sum of all the intensities divided by the total number of data points.

  2. (b)

    I/I avg values were tabulated for 0.2-deg intervals and respective plots and analyses (Figures 7(b) and (c) and Table III) were obtained.

It should be noted that the output typically contained more details (better resolution (Figure 7(a) vs (c) and Table I vs II) than the conventional ODF analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raveendra, S., Mishra, S., Mani Krishna, K. et al. Patterns of Recrystallization in Warm- and Hot-Deformed AA6022. Metall Mater Trans A 39, 2760–2771 (2008). https://doi.org/10.1007/s11661-008-9620-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9620-4

Keywords

Navigation