Skip to main content
Log in

Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The role of strain transfer in the activation of deformation twinning at grain boundaries has been characterized in commercially pure titanium deformed in bending. Two different orientations of a textured polycrystal were deformed in bending and were analyzed using electron backscattered diffraction (EBSD) to determine the active slip and twinning systems in the surface tensile region. Prismatic slip and \( \left\{ {10\bar{1}2} \right\}\left\langle {\bar{1}011} \right\rangle \) twinning were the most widely observed deformation modes in both orientations. Nonprismatic slip systems were also activated, most likely to accommodate local strain heterogeneities. A slip-stimulated twin nucleation mechanism was identified for soft/hard grain pairs: dislocation slip in a soft-oriented grain can stimulate twin nucleation in the neighboring hard grain when the slip system is well aligned with the twinning system. This alignment was described by a slip-transfer parameter m′.[24] Twins activated by this mechanism always had the highest m′ value among the six available \( \left\{ {10\bar{1}2} \right\}\left\langle {\bar{1}011} \right\rangle \) twinning systems, while the Schmid factor, based on the global (uniaxial tensile) stress state, was a less significant indicator of twin activity. Through slip transfer, deformation twins sometimes formed despite having a very low global Schmid factor. The frequency of slip-stimulated twin nucleation depends strongly on the texture and loading direction in the material. For grain pairs having one grain with a large Schmid factor for twinning, nonparametric statistical analysis confirms that those with a larger m′ are more likely to display slip-stimulated twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Camscan is a trademark of Obducat CamScan Ltd, Waterbeach, Cambridgeshire, UK.

  2. Orientation Imaging Microscopy is a trademark of EDAX/TSL, Draper, UT.

References

  1. M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18.

    ADS  Google Scholar 

  2. F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2005, vol. 53, pp. 555–67.

    Article  CAS  Google Scholar 

  3. S. Zaefferer: Mater. Sci. Eng., A, 2003, vol. 344, pp. 20–30.

    Article  Google Scholar 

  4. X. Tan, H. Guo, H. Gu, C. Laird, and N.D.H. Munroe: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 513–18.

    Article  CAS  Google Scholar 

  5. U.F. Kocks: Metall. Trans., 1970, vol. 1, pp. 1121–43.

    Google Scholar 

  6. M.H. Yoo, J.R. Morris, K.M. Ho, and S.R. Agnew: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 813–22.

    CAS  ADS  Google Scholar 

  7. A.A. Salem, S.R. Kalidindi, and R.D. Doherty: Acta Mater., 2003, vol. 51, pp. 4225–37.

    Article  CAS  Google Scholar 

  8. F.P.E. Dunne, A. Walker, and D. Rugg: Proc. R. Soc. London, Ser. A, 2007, vol. 463, pp. 1467–89.

    Article  CAS  ADS  Google Scholar 

  9. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp 1–157.

    Article  Google Scholar 

  10. N. Thompson and D.J. Millard: Philos. Mag., 1952, vol. 43, pp. 422–40.

    CAS  Google Scholar 

  11. B.A. Bilby and A.G. Crocker: Proc. R. Soc. London, Ser. A, 1965, vol. 288, pp. 240–55.

    Article  CAS  ADS  Google Scholar 

  12. Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang: Mater. Sci. Eng., A, 2005, vol. 398, pp. 209–19.

    Article  Google Scholar 

  13. A. Serra and D.J. Bacon: Philos. Mag., 1996, vol. 73, pp. 333–43.

    Article  CAS  ADS  Google Scholar 

  14. S.G. Song and G.T. Gray III: Acta Metall. Mater., 1995, vol. 43, pp. 2339–2350.

    Article  CAS  Google Scholar 

  15. A. Serra, D.J. Bacon, and R.C. Pond: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 809–12.

    CAS  ADS  Google Scholar 

  16. G.C. Kaschner, C.N. Tom′e, R.J. McCabe, A. Misra, S.C. Vogel, and D.W. Brown: Mater. Sci. Eng., A, 2007, vol. 463, pp. 122–27.

    Article  Google Scholar 

  17. A.A. Salem, S.R. Kalidindi, and S.L. Semiatin: Acta Mater., 2005, vol. 53, pp. 3495–3502.

    Article  CAS  Google Scholar 

  18. S. Nemat-Nasser, W.G. Guo, and J.Y. Cheng: Acta Mater., 1999, vol. 47, pp. 3705–20.

    Article  CAS  Google Scholar 

  19. Y. Chino, K. Kimura, M. Mabuchi: Mater. Sci. Eng., A, 2008, vol. 486, pp. 481–88.

    Article  Google Scholar 

  20. L. Kucherov and E.B. Tadmor: Acta Mater., 2007, vol. 55, pp. 2065–74.

    Article  CAS  Google Scholar 

  21. L. Capolungo and I.J. Beyerlein: Phys. Rev. B, 2008, vol. 78, art. no. 024117.

  22. T.A. Mason, J.F. Bingert, G.C. Kaschner, S.I. Wight, and R.J. Larsen: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 949–54.

    CAS  ADS  Google Scholar 

  23. Y. Hu and V. Randle: Scripta Mater., 2007, vol. 57, pp. 1051–54.

    Google Scholar 

  24. J. Luster and M.A. Morris: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1745–56.

    Article  CAS  ADS  Google Scholar 

  25. W.A.T. Clark, R.H. Wagoner, Z.Y. Shen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum: Scripta Metall. Mater., 1992, vol. 26, pp. 203–06.

    Article  CAS  Google Scholar 

  26. B.A. Simkin, B.C. Ng, T.R. Bieler, M.A. Crimp, and D.E. Mason: Intermetallics, 2003, vol. 11, pp. 215–23.

    Article  CAS  Google Scholar 

  27. D.L. Davidson, R.G. Tryon, M. Oja, R. Matthews, and K.S. Ravi Chandran: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2214–25.

    Article  CAS  ADS  Google Scholar 

  28. R.G. Miller: Beyond ANOVA: Basics of Applied Statistics, Texts in Statistical Science, Chapman and Hall/CRC, Boca Raton, FL, 1998, pp. 41–64.

    Google Scholar 

  29. H.W. Lilliefors: J. Am. Statistical Assoc., 1967, vol. 62 (318), pp. 399–402.

    Article  Google Scholar 

  30. J.E. Freund: Mathematical Statistics with Applications, 7th ed., Prentice Hall, Upper Saddle River, NJ, 2004, pp. 529–86.

    Google Scholar 

  31. E.S. Keeping: Introduction to Statistical Inference, D. Von Nostrand Company, Princeton, NJ, 1962, p. 432.

    Google Scholar 

  32. D. Kumar, T.R. Bieler, D.E. Mason, M.A. Crimp, F. Roters, and D. Raabe: J. Eng. Mater. Technol., 2008, vol. 130, art. no. 021012.

  33. A. Fallahi, D.E. Mason, D. Kumar, T.R. Bieler, and M.A. Crimp: Mater. Sci. Eng., A, 2006, vol. 432, pp. 281–91.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a Materials World Network grant from the National Science Foundation (North Arlington, VA, Grant No. DMR-0710570) and Deutsche Forschungsgemeinschaft (Grant No. EI 681/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.R. Bieler.

Additional information

Manuscript submitted May 9, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Yang, Y., Eisenlohr, P. et al. Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium. Metall Mater Trans A 41, 421–430 (2010). https://doi.org/10.1007/s11661-009-0097-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0097-6

Keywords

Navigation