Skip to main content
Log in

Effects of Mo, Cr, and V Additions on Tensile and Charpy Impact Properties of API X80 Pipeline Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore and Polar Eng. Conf., The International Society of Offshore and Polar Engineers, Honolulu, HI, 2003, pp. 10–18.

  2. R. Deny: Pipeline Technology, Elsevier, Amsterdam, The Netherlands, 2000, vol. I, pp. 1–116.

  3. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth & Co., Ltd., London, 1988, pp. 80–100.

    Google Scholar 

  4. J. Takamura and S. Mizoguchi: Proc. 6th Int. Iron Steel Congr., ISIJ, Nagoya, Japan, 1990, pp. 591–97.

  5. G. Mannucci and D. Harris: Fracture Properties of API X100 Gas Pipeline Steels, Final Report, European Commission, Brussels, Belgium, 2002, vol. 1, pp. 1–128.

  6. D.J. Horsley: Eng. Fract. Mech., 2003, vol. 70, pp. 547–52.

    Article  Google Scholar 

  7. W.A. Maxey: 5th Symp. Line Pipe Research, AGA, Houston, TX, 1974, catalog no. L30174, pp. 1–21.

  8. W.A. Maxey, J.F. Kiefner, and R.J. Eiber: Ductile Fracture Arrest in Gas Pipelines, AGA, Houston, TX, 1976, catalog no. L32176, pp. 1–46

  9. N. Nozaki, K. Bessyo, Y. Sumitomo, I. Takeuchi, and A. Yamashita: Sumitomo Search, 1981, vol. 26, pp. 76–90.

    Google Scholar 

  10. G.M. Wilkowski, W.A. Maxey, and R.J. Eiber: Can. Metall. Q., 1980, vol. 19, pp. 59–77.

    CAS  Google Scholar 

  11. “API Recommended Practice 5L3: Recommended Practice for Conducting Drop-Weight Tear Tests on Line Pipe,” 3rd ed., API Exploration and Production Collection, API, Washington, DC, 1996, 9 pp

  12. N.J. Kim: J. Met., 1983, vol. 35, pp. 21–27.

    CAS  Google Scholar 

  13. N.J. Kim, A.J. Yang, and G. Thomas: Metall. Mater. Trans. A, 1985, vol. 16A, pp. 471–74.

    ADS  CAS  Google Scholar 

  14. B. Hwang, Y.M. Kim, S. Lee, N.J. Kim, and S.S. Ahn: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 725–39.

    CAS  Google Scholar 

  15. Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: ISIJ Int., 2002, vol. 42, pp. 1571–77.

    Article  CAS  Google Scholar 

  16. I.D. Choi, D.M. Bruce, D.K. Matlock, and J.G. Speer: Metall. Mater. Int., 2008, vol. 14, pp. 139–47.

    Article  CAS  Google Scholar 

  17. D.W. Suh, C.S. Oh, and S.J. Kim: Met. Mater. Int., 2008, vol. 14, pp. 175–83.

    Google Scholar 

  18. “ASTM E8M-08: Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2008, vol. 03.01, pp. 1–25.

  19. “ASTM Standard E23-07: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2006, vol. 03.01, pp. 1–27.

  20. W. Oldfield: ASTM Standardization News, 1975, pp. 24–29.

  21. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505–16.

    Article  CAS  ADS  Google Scholar 

  22. T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, vol. 1, pp. 1–165.

  23. G. Krauss and S.W. Thompson: ISIJ, 1995, vol. 35, pp. 937–45.

    Article  CAS  Google Scholar 

  24. Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim: ISIJ Int., 2002, vol. 42, pp. 1571–77.

    Article  CAS  Google Scholar 

  25. F.T. Han, B.C. Hwang, D.W. Suh, Z.C. Wang, D.L. Lee, and S.J. Kim: Met. Mater. Int., 2008, vol. 14, pp. 667–73.

    Article  CAS  Google Scholar 

  26. Z. Tang and W. Strumpf: Mater. Charact., 2008, vol. 59, pp. 717–28.

    Article  CAS  Google Scholar 

  27. C. Jing, D.W. Suh, C.S. Oh, Z.C. Wang, and S.J. Kim: Met. Mater. Int., 2007, vol. 13, pp. 13–20.

    CAS  Google Scholar 

  28. S.J. Kim, C.G. Lee, T.H. Lee, and C.S. Oh: Scripta Mater., 2003, vol. 48, pp. 539–44.

    Article  CAS  Google Scholar 

  29. M. Honjo and Y. Saito: ISIJ Int., 2000, vol. 40, pp. 914–19.

    Article  CAS  Google Scholar 

  30. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–16.

    Article  ADS  Google Scholar 

  31. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  32. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Proc. 15th Conf. Mechanical Behaviors of Materials, Korean Institute of Metals and Materials, Seoul, 2001, pp. 177–86.

  33. F.B. Pickering and T. Gladman: ISI Spec. Rep., 1961, vol. 81, pp. 10–20.

    Google Scholar 

  34. N. Okumura: Met. Sci., 1983, vol. 17, pp. 581–89.

    Article  CAS  Google Scholar 

  35. Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1731–42.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Laboratory Program (Grant No. ROA-2004-000-10361-0 (2008)) funded by the Korea Science and Engineering Foundation and by POSCO (Pohang, Korea) under Contract No. 2007Y202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted October 31, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S.Y., Shin, S.Y., Seo, CH. et al. Effects of Mo, Cr, and V Additions on Tensile and Charpy Impact Properties of API X80 Pipeline Steels. Metall Mater Trans A 40, 1851–1862 (2009). https://doi.org/10.1007/s11661-009-9884-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9884-3

Keywords

Navigation