Skip to main content
Log in

Dissolution Condensation Mechanism of Stress Corrosion Cracking in Liquid Metals: Driving Force and Crack Kinetics

  • Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stress corrosion cracking (SCC) in aqueous solution is driven by exothermic reactions of metal oxidation. This stimulus, as well as classical mechanisms of SCC, does not apply to SCC in liquid metals (LMs). In the framework of the dissolution-condensation mechanism (DCM), we analyzed the driving force and crack kinetics for this nonelectrochemical mode of SCC that is loosely called “liquid metal embrittlement” (LME). According to DCM, a stress-induced increase in chemical potential at the crack tip acts as the driving force for out-of-the-tip diffusion mass transfer that is fast because diffusion in LMs is very fast and surface energy at the solid-liquid interface is small. In this article, we review two versions of DCM mechanism, discuss the major physics behind them, and develop DCM further. The refined mechanism is applied then to the experimental data on crack velocity V vs stress intensity factor, the activation energy of LME, and alloying effects. It is concluded that DCM provides a good conceptual framework for analysis of a unified kinetic mechanism of LME and may also contribute to SCC in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.R.C. Westwood, C.M. Preece, and M.H. Kamdar: in Fracture, H. Leibowitz, ed., Academic Press, New York, NY, 1971, vol. 3, pp. 589–636.

  2. B. Joseph, M. Piscat, and F. Barbier: Eur. Phys. J. AP, 1999, vol. 5, pp. 19–31.

    Article  CAS  Google Scholar 

  3. S.P. Lynch: Acta Metall., 1981, vol. 29, pp. 325–40; Acta Metall., 1988, vol. 36, pp. 2639–61.

    Article  CAS  Google Scholar 

  4. M.H. Kamdar: in Treatise on Material Science and Technology, vol. 25, Embrittlement of Engineering Alloys, C.L. Briant and S. Banerji, eds., Academic Press, New York, NY, 1983, pp. 273–350.

  5. E. Glickman: in Multiscale Phenomena in Plasticity, NATO ASI Series, J. Lepinoux et al., eds., Kluwer Academic Publishers, Dortrecht, 2000, pp. 383–401.

  6. E. Glickman and Yu Gorynov: Sov. Mater. Sci., 1978, vol. 4, pp. 355–64.

    Google Scholar 

  7. C.L. Briant: Metallurgical Aspects of Environmental Failures, Elsevier, Amsterdam, 1985, p. 236.

    Google Scholar 

  8. E. Glickman: Interface Sci., 2003, vol. 11, pp. 451–58.

    Article  Google Scholar 

  9. E.D. Shchukin: in Surface Effects in Crystal Plasticity, R. Latanision and J. Fourie, eds., NATO ASI Series, Ser. E 317, Nordhoff, Leyden, 1977, pp. 701–36.

  10. Structural Materials for Hybrid Systems: A Challenge in Metallurgy, D. Gorse and J.-L. Boutard, eds., Special Issue of J. Phys. IV, 2002, vol. 12, Pr 8, pp. 299.

  11. T.P. Slavin and N.S. Stoloff: Mater. Sci. Eng., 1984, vol. 68, pp. 55–71.

    Article  CAS  Google Scholar 

  12. J.C. Scully: The Fundamentals of Corrosion, Pergamon Press, Oxford, United Kingdom, 1990, p. 223.

    Google Scholar 

  13. W.M. Robertson: Trans. AIME, 1966, vol. 236, pp. 1478–86.

    CAS  Google Scholar 

  14. E. Glickman: Z. Metallkd., 2005, vol. 96, pp. 1204–10.

    CAS  Google Scholar 

  15. P.A. Rebinder and E.D. Shchukin: Progress in Surface Science, Pergamon Press, Oxford, United Kingdom, 1972, vol. 3, part 2, pp. 97–188.

  16. S.P. Lynch: Mater. Sci. Eng., 1985, vol. 72, pp. 33–41.

    Article  Google Scholar 

  17. S.P. Lynch: Scripta Mater., 2009, vol. 61, pp. 331–34.

    Article  CAS  Google Scholar 

  18. H.W. Liu: Acta Mater., 2008, vol. 56, pp. 4339–48.

    Article  CAS  Google Scholar 

  19. Ho-Seok Nam and D.J. Srolovitz: PRL, 2007, vol. 99, pp. 025501-4.

  20. Ho-Seok Nam and D.J. Srolovitz: Phys. Rev., 2007, vol. B76, pp. 184114-14.

  21. R.E. Clegg: Eng. Fract. Mech., 2001, vol. 68, pp. 1777–90.

    Article  Google Scholar 

  22. I. Kaur, W. Gust, and L. Kozma: Fundamentals of Grain and Interphase Boundary Diffusion, Ziegler Press, Stuttgart, 1989, p. 420.

    Google Scholar 

  23. E. Glickman, Y. Gorynov, K. Saruchev, and V. Demin: Sov. Phys. Chem. Dokl., 1976, vol. 227, pp. 645–48.

    Google Scholar 

  24. K. Saruchev: Ph.D. Thesis, Moscow State University, Moscow, 1975, p. 195.

  25. E. Glickman, K. Sarychev, V. Demin, and Yu Goryunov: Sov. Phys. J., 1976, vol. 7, pp. 22–29.

    Google Scholar 

  26. R.N. Stevens and R. Dutton: Mater. Sci. Eng., 1971, vol. 8, pp. 220–34.

    Article  CAS  Google Scholar 

  27. S.M. Ohr: J. Phys. Chem. Solids, 1987, vol. 48, p. 1007.

    Article  Google Scholar 

  28. Z. Hadjem-Hamouche, T. Auger, and I. Guillot: Corr. Sci., 2009, vol. 51, pp. 2580–90.

    Article  CAS  Google Scholar 

  29. J.F. Knott: Fundamentals of Fracture Mechanics, Butterworths, London, 1974, p. 215.

    Google Scholar 

  30. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, CRC Taylor & Francis, Philadelphia, 2005, p. 640.

  31. E. Pereiro-Lopez, W. Ludwig, D. Bellet, and C. Lemaignan: Acta Mater., 2006, vol. 54, pp. 4307–18.

    Article  CAS  Google Scholar 

  32. E. Glickman: Diffus. Def. Forum, 2007, vol. 264, pp. 141–49.

    Article  CAS  Google Scholar 

  33. J.M. Kraft and J.R. Mulherin: Trans. ASM, 1969, vol. 62, p. 64.

    Google Scholar 

  34. R.W. Vook: in Environment-Sensitive Mechanical Behaviour, A.R.C. Westwood and. N.S. Stoloff, eds., Gordon and Breach, New York, NY, 1966, pp. 657–59.

  35. Y.J. Su, Y.B. Wang, and W.Y. Chu: Proc. NACE Conf. Corrosion 98, NACE, Houston, TX, 1998, paper no. 255.

  36. Metals in Mercury, IUPAC Solubility Data Series, C. Hirayama, ed., Pergamon Press, New York, NY, 1986, vol. 25, pp. 638–41.

  37. E. Glickman, Yu Gorynov, and V. Demin: Phys. Chem. Mech. Surf., 1985, vol. 2, pp. 3041–52.

    Google Scholar 

  38. E. Glickman, A. Cherepanov, and L. Tuzov: Sov. Phys. J., 1980, vol. 23, pp. 364–74.

    Article  Google Scholar 

  39. E. Glickman, K. Sarychev, V. Demin, and Yu Goryunov: Sov. Phys. J., 1976, vol. 5, pp. 16–26.

    Google Scholar 

  40. E. Glickman, K. Sarychev, V. Demin, and Yu Goryunov: Sov. Phys. J., 1976, vol. 5, pp. 7–15.

    Google Scholar 

  41. E. Glickman, Yu Goryunov, and I. Ledovskaya: Sov. Mater. Sci., 1979, vol. 6, pp. 446–50.

    Google Scholar 

  42. M.F. Ashby and D.R. Jones: Engineering Materials 1, Pergamon Press, Oxford, United Kingdom, 1991, p. 279.

    Google Scholar 

  43. V. Dubkov, K. Barmak, W. Lengauerc, and P. Gas: J. Alloys Compd., 2005, vol. 61, pp. 61–74.

    Article  Google Scholar 

  44. E. Glickman, V. Igoshev, and A. Braginsky: Phys. Chem. Mech. Surf., 1985, vol. 10, pp. 37–43.

    Google Scholar 

  45. E. Glickman, A. Cherepanov, and L. Tuzov: Sov. Phys. J., 1980, vol. 5, pp. 14–24.

    Google Scholar 

  46. E. Glickman, V. Igoshev, E. Zenkova, and A. Nefedov: Phys. Chem. Mech. Surf., 1987, vol. 11, pp. 3390–3404.

    Google Scholar 

  47. E. Glickman and V. Igoshev: Phys. Chem. Mech. Surf., 1989, vol. 3, pp. 104–12.

    Google Scholar 

  48. E. Glickman and V. Igoshev: Phys. Chem. Mech. Surf., 1989, vol. 4, pp. 128–36.

    Google Scholar 

  49. Y.R. Kolobov, V.B. Marvin, A.D. Korotaev, V.I. Igoshev, and E. Glickman: Phys. Met. Metall., 1994, vol. 78, pp. 133–40.

    Google Scholar 

  50. E. Glickman and V. Igoshev: Phys. Chem. Mech. Surf., 1984, vol. 3, pp. 3473–94.

    Google Scholar 

  51. P. Shewmon: Diffusion in Solids, TMS, Warrendale, PA, 1989, p. 217.

    Google Scholar 

  52. H.P. Bonzel: Surface Diffusion in Metals, Landoldt Bernstein, New Series, III/26, Springer, Berlin, 1990, p. 152.

  53. P. Gordon: Metall. Trans. A, 1978, vol. 9A, pp. 267–73.

    CAS  Google Scholar 

  54. S.P. Lynch: Mater. Sci. Eng., 1989, vol. A108, pp. 203–12.

    CAS  Google Scholar 

  55. S.P. Lynch: Mater. Characterization, 1992, vol. 28, pp. 279–28.

    Article  CAS  Google Scholar 

  56. D.R. Wilson: Structure of Liquid Metals, Institute of Metals, London, 1965, p. 202.

    Google Scholar 

  57. P.B. Heimann: Auflosung von Kristallen: Theorie und Technische Anwendung, Springer, New York, NY, 1975, cited by Ref. 58.

  58. R.B. Heiman: Dissolution of Crystals: Theory and Practice), Nedra, Leningrad, 1979, pp. 271 (in Russian).

  59. V.I. Nikitin: Physico-Chemical Phenomena under the Interaction of Solid and Liquid Metals, Atomizdat, Moscow, 1967, p. 435 (in Russian).

  60. F.N. Rhines, J.A. Alexander, and W.F. Barklay: Trans. ASM, 1962, vol. 55, p. 22, cited by Ref. 61.

  61. A.R. Westwood, C.M. Preece, and M.H. Kamdar: in Environmental Sensitive Mechanical Behaviour, A.R.C. Westwood and N.S. Stoloff, eds., Gordon and Breach, New York, NY, 1966, pp. 119–60.

  62. A. Kapp: in Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., TMS-AIME, Warrendale, PA, 1983, cited by Ref. 4.

  63. G. Doge: Z. Naturforsch., 1965, vol. 20a, p. 634, cited by Ref. 64.

  64. D.K. Belastchenko: Transport Phenomena in Liquid Metals and Semiconductors, Atomizdat, Moskow, 1970, p. 396 (in Russian).

Download references

Acknowledgments

Dr. V.I. Igoshev and Professor M. Molotskii are gratefully acknowledged for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny E. Glickman.

Additional information

Manuscript submitted April 12, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glickman, E.E. Dissolution Condensation Mechanism of Stress Corrosion Cracking in Liquid Metals: Driving Force and Crack Kinetics. Metall Mater Trans A 42, 250–266 (2011). https://doi.org/10.1007/s11661-010-0429-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0429-6

Keywords

Navigation