Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 2/2011

01.02.2011 | Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Review of Environmentally Assisted Cracking

verfasst von: K. Sadananda, A. K. Vasudevan

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many efforts have been made in the past by several researchers to arrive at some unifying principles governing the embrittlement phenomena. An inescapable conclusion reached by all these efforts was that the behavior is very complex. Hence, recognizing the complexity of material/environment behavior, we focus our attention here only in extracting some similarities in the experimental trends to arrive at some generic principles of behavior. Crack nucleation and growth are examined under static load in the presence of internal and external environments. Stress concentration, either pre-existing or in-situ generated, appears to be a requirement for embrittlement. A chemical stress concentration factor is defined for a given material/environment system as the ratio of failure stress with and without the damaging chemical environment. All factors that affect the buildup of the required stress concentration, such as planarity of slip, stacking fault energy, etc., also affect the stress-corrosion behavior. The chemical stress concentration factor is coupled with the mechanical stress concentration factor. In addition, generic features for all systems appear to be (a) an existence of a threshold stress as a function of concentration of the damaging environment and flow properties of the material, and (b) an existence of a limiting threshold as a function of concentration, indicative of a damage saturation for that environment. Kinetics of crack growth also depends on concentration and the mode of crack growth. In general, environment appears to enhance crack tip ductility on one side by the reduction of energy for dislocation nucleation and glide, and to reduce cohesive energy for cleavage, on the other. These two opposing factors are coupled to provide environmentally induced crack nucleation and growth. The relative ratio of these two opposing factors depends on concentration and flow properties, thereby affecting limiting thresholds. The limiting concentration or saturation depends on the relative chemistry of environment and material. A dynamic dislocation model is suggested to account for crack growth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.R.C. Westwood, C.M. Preece, and M.H. Kamdar: in Fracture, H. Leibowitz, ed., 1971, p. 13. A.R.C. Westwood, C.M. Preece, and M.H. Kamdar: in Fracture, H. Leibowitz, ed., 1971, p. 13.
2.
3.
Zurück zum Zitat A.R. Troiano: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM INTERNATIONAl, Materials Park, OH, 1974, pp. 3–15. A.R. Troiano: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM INTERNATIONAl, Materials Park, OH, 1974, pp. 3–15.
4.
Zurück zum Zitat M.O. Speidel: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM INTERNATIONAL, Materials Park, OH, 1974, pp. 249–76. M.O. Speidel: in Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM INTERNATIONAL, Materials Park, OH, 1974, pp. 249–76.
5.
Zurück zum Zitat H.H. Johnson: in Hydrogen Embrittlement and Stress Corrosion Cracking, R. Gibala and R.F. Hehemann, eds., ASM, Metals Park, OH, 1984, pp. 3–27. H.H. Johnson: in Hydrogen Embrittlement and Stress Corrosion Cracking, R. Gibala and R.F. Hehemann, eds., ASM, Metals Park, OH, 1984, pp. 3–27.
6.
Zurück zum Zitat W.W. Gerberich and S. Chen: in Environment Induced Cracking of Metals, R.P. Gangloff and H.B. Ives, eds., NACE, Houston, TX, 1990, pp. 167–86 W.W. Gerberich and S. Chen: in Environment Induced Cracking of Metals, R.P. Gangloff and H.B. Ives, eds., NACE, Houston, TX, 1990, pp. 167–86
7.
Zurück zum Zitat R.A. Oriani: Berichte Bunsen Gesellschaft Phys. Chem., 1972, vol. 76, pp. 848–57. R.A. Oriani: Berichte Bunsen Gesellschaft Phys. Chem., 1972, vol. 76, pp. 848–57.
8.
Zurück zum Zitat R.A. Oriani: in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R.W. Stahle, J. Hochman, R. McCright, and J. Slater, eds., NACE-5, National Association of Engineers, Houston, TX, 1971, pp. 32–50. R.A. Oriani: in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R.W. Stahle, J. Hochman, R. McCright, and J. Slater, eds., NACE-5, National Association of Engineers, Houston, TX, 1971, pp. 32–50.
9.
Zurück zum Zitat R.P. Wei: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA, 1981, pp. 677–89. R.P. Wei: in Hydrogen Effects in Metals, I.M. Bernstein and A.W. Thompson, eds., TMS, Warrendale, PA, 1981, pp. 677–89.
10.
Zurück zum Zitat A. Turnbull: Corrosion, 2001, vol. 57, pp. 175–89. A. Turnbull: Corrosion, 2001, vol. 57, pp. 175–89.
11.
Zurück zum Zitat R.P. Gangloff: in Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B.Karihaloo, eds., Elsevier, New York, NY, 2003, vol. 6. R.P. Gangloff: in Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B.Karihaloo, eds., Elsevier, New York, NY, 2003, vol. 6.
13.
14.
Zurück zum Zitat S.P. Lynch: in Hydrogen Effects in Materials Behavior and Corrosion Interactions Deformations, N.R. Moody et al., eds., TMS, Warrendale, PA, 2003, pp. 449–86. S.P. Lynch: in Hydrogen Effects in Materials Behavior and Corrosion Interactions Deformations, N.R. Moody et al., eds., TMS, Warrendale, PA, 2003, pp. 449–86.
15.
16.
Zurück zum Zitat S.M. Wiederhorn, S.W. Freiman, E.R. Fuller, Jr., and C.J. Simmons: J. Mater. Sci., 1982, vol. 17, pp. 3460–78.CrossRef S.M. Wiederhorn, S.W. Freiman, E.R. Fuller, Jr., and C.J. Simmons: J. Mater. Sci., 1982, vol. 17, pp. 3460–78.CrossRef
17.
Zurück zum Zitat E. Protopopoff and P. Marcus: in Corrosion Mechanisms in Theory and Practice, P. Marcus, ed., Marcel Dekker, Basil, 2002, pp. 53–96.CrossRef E. Protopopoff and P. Marcus: in Corrosion Mechanisms in Theory and Practice, P. Marcus, ed., Marcel Dekker, Basil, 2002, pp. 53–96.CrossRef
20.
21.
Zurück zum Zitat B. Lawn: Fracture of Brittle Solids, 2nd ed., University Press, Cambridge, United Kingdom, 1995. B. Lawn: Fracture of Brittle Solids, 2nd ed., University Press, Cambridge, United Kingdom, 1995.
22.
Zurück zum Zitat S.M. Mikheevskiy and G. Glinka: Int. J. Fatigue, 2009, vol. 31, pp. 1828–36.CrossRef S.M. Mikheevskiy and G. Glinka: Int. J. Fatigue, 2009, vol. 31, pp. 1828–36.CrossRef
23.
Zurück zum Zitat G.E. Beltz, D.M. Lipkins, and L.L. Fisher: Phys. Rev. Lett., 1999, vol. 82, pp. 4468–71.CrossRef G.E. Beltz, D.M. Lipkins, and L.L. Fisher: Phys. Rev. Lett., 1999, vol. 82, pp. 4468–71.CrossRef
24.
Zurück zum Zitat N. Bandhopadhyay, J. Kamada, and C.J. McMahon, Jr.: Metall. Trans. A, 1983, vol. 14A, pp. 881–88. N. Bandhopadhyay, J. Kamada, and C.J. McMahon, Jr.: Metall. Trans. A, 1983, vol. 14A, pp. 881–88.
25.
Zurück zum Zitat M. Tvrdy: in Fracture 1977, D.M.R.Taplin, ed., University of Waterloo Press, Waterloo, ON, Canada, 1977, vol. 2, pp. 255–59. M. Tvrdy: in Fracture 1977, D.M.R.Taplin, ed., University of Waterloo Press, Waterloo, ON, Canada, 1977, vol. 2, pp. 255–59.
26.
Zurück zum Zitat V.I. Likhtman and E.D. Shchukin: Sov. Phys.–Uspekhi, 1958, vol. 1, pp. 91–95.CrossRef V.I. Likhtman and E.D. Shchukin: Sov. Phys.–Uspekhi, 1958, vol. 1, pp. 91–95.CrossRef
27.
Zurück zum Zitat A.R.C. Westwood, C.M. Preece, and M.H. Kamdar: Am. Soc. Met. Trans. Q., 1967, vol. 60, pp. 723–25. A.R.C. Westwood, C.M. Preece, and M.H. Kamdar: Am. Soc. Met. Trans. Q., 1967, vol. 60, pp. 723–25.
28.
Zurück zum Zitat N.S. Stoloff, R.G. Davis, and T.L. Johnston: in Environment Sensitive Mechanical Behavior, A.R.C. Westwood and N.S. Stoloff, eds., Gordon & Beach, NY, 1966, pp. 613–54. N.S. Stoloff, R.G. Davis, and T.L. Johnston: in Environment Sensitive Mechanical Behavior, A.R.C. Westwood and N.S. Stoloff, eds., Gordon & Beach, NY, 1966, pp. 613–54.
29.
Zurück zum Zitat M.H. Kamdar and A.R.C. Westwood: Acta Metall., 1968, vol. 16, p. 1335.CrossRef M.H. Kamdar and A.R.C. Westwood: Acta Metall., 1968, vol. 16, p. 1335.CrossRef
30.
Zurück zum Zitat A.N. Stroh: Proc. R. Soc., 1954, vol. 223A, p. 404. A.N. Stroh: Proc. R. Soc., 1954, vol. 223A, p. 404.
31.
32.
Zurück zum Zitat J.J. Gilman: Trans. TMS-AIME, 1958, vol. 212, pp. 783–91. J.J. Gilman: Trans. TMS-AIME, 1958, vol. 212, pp. 783–91.
33.
Zurück zum Zitat T. Mura: Micromechanics of Defects in Solids, Kluwer Acadamic Publishers, Dordrecht, 1991. T. Mura: Micromechanics of Defects in Solids, Kluwer Acadamic Publishers, Dordrecht, 1991.
34.
Zurück zum Zitat J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.
35.
Zurück zum Zitat P. Gordon: Metall. Trans. A, 1978, vol. 9A, pp. 267–73. P. Gordon: Metall. Trans. A, 1978, vol. 9A, pp. 267–73.
36.
Zurück zum Zitat W. Rostoker, J.M. McCaughey, and H. Markus: Embrittlement by Liquid Metals, Reinhold Publishing Co., New York, NY, 1960. W. Rostoker, J.M. McCaughey, and H. Markus: Embrittlement by Liquid Metals, Reinhold Publishing Co., New York, NY, 1960.
37.
Zurück zum Zitat R.D. Kane, D. Wu, and S.M. Wilhelm: ASTM STP-1210, ASTM, Philadelphia, PA, 1993, pp. 181–92. R.D. Kane, D. Wu, and S.M. Wilhelm: ASTM STP-1210, ASTM, Philadelphia, PA, 1993, pp. 181–92.
38.
Zurück zum Zitat M. Elboujdaini, R. Ghali, and A. Galibois: in Environmental Induced Cracking of Metals, NACE-5, R.P. Gangloff and M.B. Ives, eds., NACE-10, Houston, TX, 1990, pp. 365–70. M. Elboujdaini, R. Ghali, and A. Galibois: in Environmental Induced Cracking of Metals, NACE-5, R.P. Gangloff and M.B. Ives, eds., NACE-10, Houston, TX, 1990, pp. 365–70.
39.
Zurück zum Zitat J.A. Beavers, G.H. Koch, and W.E. Berry: Corrosion of Metals in Marine Environments, Metals and Ceramics Information Center, Battelle Columbus Labs., Columbus, OH, 1986. J.A. Beavers, G.H. Koch, and W.E. Berry: Corrosion of Metals in Marine Environments, Metals and Ceramics Information Center, Battelle Columbus Labs., Columbus, OH, 1986.
40.
Zurück zum Zitat S. Lynch: Monash University, Melbourne, Australia, private communication, 2009. S. Lynch: Monash University, Melbourne, Australia, private communication, 2009.
41.
Zurück zum Zitat W.Y. Chu, X.M. Liu, J.L. Luo, and L.J. Qiao: Can. Metall. Q., 1999, vol. 38, pp. 127–32.CrossRef W.Y. Chu, X.M. Liu, J.L. Luo, and L.J. Qiao: Can. Metall. Q., 1999, vol. 38, pp. 127–32.CrossRef
42.
Zurück zum Zitat A.P. Druschitz and P. Gordon: Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., Metallurgical Society of AIME Publications, Warrendale, PA, 1984, pp. 285–316. A.P. Druschitz and P. Gordon: Embrittlement by Liquid and Solid Metals, M.H. Kamdar, ed., Metallurgical Society of AIME Publications, Warrendale, PA, 1984, pp. 285–316.
43.
Zurück zum Zitat P. Gordon and H.H. An: Metall. Trans. A, 1982, vol. 13A, pp. 457–72. P. Gordon and H.H. An: Metall. Trans. A, 1982, vol. 13A, pp. 457–72.
44.
Zurück zum Zitat A.P. Druschitz: Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, 1982. A.P. Druschitz: Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, 1982.
45.
46.
Zurück zum Zitat M.H. Kamdar: in Treatise on Materials Science and Technology, C.L. Briant and S.K. Benerji, eds., Academic Press, New York, NY, 1983, vol. 25, pp. 361–459 M.H. Kamdar: in Treatise on Materials Science and Technology, C.L. Briant and S.K. Benerji, eds., Academic Press, New York, NY, 1983, vol. 25, pp. 361–459
47.
Zurück zum Zitat W.P Wei and M. Gao: in Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 579–607. W.P Wei and M. Gao: in Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge, NJ, 1985, pp. 579–607.
48.
Zurück zum Zitat D.O. Sprowls, M.B. Shumaker, J.D. Walsh, and J.W. Coursen: “Evaluation of Stress Corrosion Cracking Susceptibilty Using Fracture Mechanics Techniques,” Final Report Part I, George C. Marshall Space Flight Center, Huntsville, AL, Contract No. NAS 8-21487, May 31, 1973. D.O. Sprowls, M.B. Shumaker, J.D. Walsh, and J.W. Coursen: “Evaluation of Stress Corrosion Cracking Susceptibilty Using Fracture Mechanics Techniques,” Final Report Part I, George C. Marshall Space Flight Center, Huntsville, AL, Contract No. NAS 8-21487, May 31, 1973.
49.
Zurück zum Zitat W.M. Robertson: Trans. AIME, 1966, vol. 236, p. 1478. W.M. Robertson: Trans. AIME, 1966, vol. 236, p. 1478.
50.
Zurück zum Zitat E. Glickman, V. Igoshev, and A. Braginsky: Phys. Chem. Mech. Surf., 1987, vol. 4, pp. 3167–80. E. Glickman, V. Igoshev, and A. Braginsky: Phys. Chem. Mech. Surf., 1987, vol. 4, pp. 3167–80.
52.
53.
Zurück zum Zitat A.K. Vasudevan and K. Sadananda: Metall. Mater. Trans. A, in press. A.K. Vasudevan and K. Sadananda: Metall. Mater. Trans. A, in press.
54.
Zurück zum Zitat N.J.H. Holroyd, G.M. Scamans, and R. Hermann: in Embrittlement by the Localized Crack Tip Environment, R.P. Gangloff, ed., TMS-AIME, Warrendale, PA, 1984, pp. 327–47. N.J.H. Holroyd, G.M. Scamans, and R. Hermann: in Embrittlement by the Localized Crack Tip Environment, R.P. Gangloff, ed., TMS-AIME, Warrendale, PA, 1984, pp. 327–47.
55.
Zurück zum Zitat K.R. Cooper, L.M. Young, R.P. Gangloff, and R.G. Kelly: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1625–34.CrossRef K.R. Cooper, L.M. Young, R.P. Gangloff, and R.G. Kelly: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1625–34.CrossRef
56.
Zurück zum Zitat R.E. Ricker: Mater. Sci. Eng. A, 1995, vol. A198 (1–2), pp. 231–38. R.E. Ricker: Mater. Sci. Eng. A, 1995, vol. A198 (1–2), pp. 231–38.
57.
Zurück zum Zitat M.M. Hall, Jr.: in Environment-Induced Cracking of Materials, S. Shipilov et al., eds., Elsevier, New York, NY, 2008, pp. 59–68. M.M. Hall, Jr.: in Environment-Induced Cracking of Materials, S. Shipilov et al., eds., Elsevier, New York, NY, 2008, pp. 59–68.
58.
Zurück zum Zitat M.M. Hall and D.M. Symons: Int. Conf. on Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, R. Jones et al., eds., TMS, Warrendale, PA, 2002, pp. 811–22. M.M. Hall and D.M. Symons: Int. Conf. on Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, R. Jones et al., eds., TMS, Warrendale, PA, 2002, pp. 811–22.
59.
60.
Zurück zum Zitat S.W. Freiman, S.M. Wiederhorn, and J.J. Mecholsky, Jr.: J. Am. Ceram. Soc., 2009, vol. 92, pp. 1371–82.CrossRef S.W. Freiman, S.M. Wiederhorn, and J.J. Mecholsky, Jr.: J. Am. Ceram. Soc., 2009, vol. 92, pp. 1371–82.CrossRef
61.
Zurück zum Zitat Y. Hirose and T. Mura: Eng. Fract. Mech., 1984, vol. 19, pp. 317–29.CrossRef Y. Hirose and T. Mura: Eng. Fract. Mech., 1984, vol. 19, pp. 317–29.CrossRef
62.
Zurück zum Zitat W.G. Clark, Jr.: Flow and Fracture, ASTM STP 631, ASTM, Philadelphia, PA, 1977, pp. 121–38. W.G. Clark, Jr.: Flow and Fracture, ASTM STP 631, ASTM, Philadelphia, PA, 1977, pp. 121–38.
63.
Zurück zum Zitat R.A. Page and W.W. Gerberich: Metall. Trans. A, 1982, vol. 13A, pp. 305–11. R.A. Page and W.W. Gerberich: Metall. Trans. A, 1982, vol. 13A, pp. 305–11.
64.
65.
Zurück zum Zitat K. Sadananda and P. Shahinian: Metall. Trans., 1981, vol. 12, p. 343.CrossRef K. Sadananda and P. Shahinian: Metall. Trans., 1981, vol. 12, p. 343.CrossRef
66.
Zurück zum Zitat W.W. Gerberich, P. Marsh, J. Hoehn, S. Venkataraman, and H. Huang: Int. Conf. on Corrosion-Deformation Interactions CDI ‘92, Fontainebleau, Les Edition de physique, zone Industrielle de Courtabaeuf, Paris, France, Oct. 1992, pp. 325–53 W.W. Gerberich, P. Marsh, J. Hoehn, S. Venkataraman, and H. Huang: Int. Conf. on Corrosion-Deformation Interactions CDI ‘92, Fontainebleau, Les Edition de physique, zone Industrielle de Courtabaeuf, Paris, France, Oct. 1992, pp. 325–53
67.
Zurück zum Zitat R.J. Walter and W.T. Chandler: in Environmental Degradation of Engineering Materials, M.R. Louthan and R.P. McNitt, eds., VPI Press, Blacksburg, VA, 1977, pp. 513–22. R.J. Walter and W.T. Chandler: in Environmental Degradation of Engineering Materials, M.R. Louthan and R.P. McNitt, eds., VPI Press, Blacksburg, VA, 1977, pp. 513–22.
68.
Zurück zum Zitat N.R. Moody, R.E. Stoltz, and M.W. Perra: Res. Mechanica, 1986, vol. 18, p. 1. N.R. Moody, R.E. Stoltz, and M.W. Perra: Res. Mechanica, 1986, vol. 18, p. 1.
69.
Zurück zum Zitat N.R. Moody, M.W. Perra, and S.L. Robinson: Scripta Metall., 1988, vol. 22, p. 1261.CrossRef N.R. Moody, M.W. Perra, and S.L. Robinson: Scripta Metall., 1988, vol. 22, p. 1261.CrossRef
70.
Zurück zum Zitat J.A. Lillard R.G. Kelly, and R.P. Gangloff: Corrosion ‘97, NACE, Houston, TX, 1997, paper no. 197. J.A. Lillard R.G. Kelly, and R.P. Gangloff: Corrosion ‘97, NACE, Houston, TX, 1997, paper no. 197.
71.
Zurück zum Zitat K. Endo, K. Komai, and I. Yamamoto: Bull. MSME, 1981, vol. 24, pp. 1326–32. K. Endo, K. Komai, and I. Yamamoto: Bull. MSME, 1981, vol. 24, pp. 1326–32.
72.
Zurück zum Zitat P.D. Hicks and C.J. Altestter: Metall. Trans. A, 1992, vol. 23A, pp. 237–49. P.D. Hicks and C.J. Altestter: Metall. Trans. A, 1992, vol. 23A, pp. 237–49.
74.
Zurück zum Zitat M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–51. M.O. Speidel: Metall. Trans. A, 1975, vol. 6A, pp. 631–51.
75.
76.
77.
Zurück zum Zitat J.R. Rice and M.A. Johnson: in Inelastic Behavior of Solids, M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, eds., McGraw-Hill Book Company, New York, 1970, p. 641. J.R. Rice and M.A. Johnson: in Inelastic Behavior of Solids, M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, eds., McGraw-Hill Book Company, New York, 1970, p. 641.
78.
Zurück zum Zitat R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.CrossRef R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.CrossRef
79.
Zurück zum Zitat R.A. Oriani and P.H. Josephic: Acta Metall., 1977, vol. 25, pp. 979–88.CrossRef R.A. Oriani and P.H. Josephic: Acta Metall., 1977, vol. 25, pp. 979–88.CrossRef
80.
Zurück zum Zitat L. Medina-Almazan, T. Auger, and D. Grose: J. Nucl. Mater., 2008, vol. 376, pp. 312–16.CrossRef L. Medina-Almazan, T. Auger, and D. Grose: J. Nucl. Mater., 2008, vol. 376, pp. 312–16.CrossRef
81.
Zurück zum Zitat G.G. Hancock and H.H. Johnson: Trans. TMS-AIME, 1966, vol. 236, pp. 513–16. G.G. Hancock and H.H. Johnson: Trans. TMS-AIME, 1966, vol. 236, pp. 513–16.
83.
Zurück zum Zitat H.S. Nam and D.J. Srolovitz: Acta Mater., 2009, vol. 57, pp. 1546–53.CrossRef H.S. Nam and D.J. Srolovitz: Acta Mater., 2009, vol. 57, pp. 1546–53.CrossRef
84.
85.
Zurück zum Zitat F.A. McLintock: J. Fract. Mech., 1968, vol. 4, p. 101. F.A. McLintock: J. Fract. Mech., 1968, vol. 4, p. 101.
86.
Zurück zum Zitat J.R. Rice and R. Thomson: Phil Mag., 1974, vol. 15, p. 567 J.R. Rice and R. Thomson: Phil Mag., 1974, vol. 15, p. 567
87.
Zurück zum Zitat J.R. Rice and J.S Wang: Mater. Sci. Eng., 1989, vol. A107, pp. 23–40. J.R. Rice and J.S Wang: Mater. Sci. Eng., 1989, vol. A107, pp. 23–40.
88.
Zurück zum Zitat G.E. Beltz and J.R. Rice: in Modeling the Deformation of Crystalline Solids, T.C. Lowe, A.D. Rollett, P.S. Follansbee, and G.S. Daehneds, eds., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 1991, pp. 457–80. G.E. Beltz and J.R. Rice: in Modeling the Deformation of Crystalline Solids, T.C. Lowe, A.D. Rollett, P.S. Follansbee, and G.S. Daehneds, eds., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 1991, pp. 457–80.
89.
Zurück zum Zitat J.R. Rice and G.E. Beltz: J. Mech. Phys. Solids, 1994, vol. 42, pp. 343–60. J.R. Rice and G.E. Beltz: J. Mech. Phys. Solids, 1994, vol. 42, pp. 343–60.
90.
Zurück zum Zitat G.E. Beltz and L.B. Freund: Phys. Status Solidi (b), 1993, vol. 180, p. 303.CrossRef G.E. Beltz and L.B. Freund: Phys. Status Solidi (b), 1993, vol. 180, p. 303.CrossRef
91.
Zurück zum Zitat D.M. Lepkin, G.E. Beltz, and L.L. Fisher: Mater. Res. Soc. Proc., 1999, vol. 539, pp. 49–56. D.M. Lepkin, G.E. Beltz, and L.L. Fisher: Mater. Res. Soc. Proc., 1999, vol. 539, pp. 49–56.
92.
Zurück zum Zitat G.E. Bletz and J.R. Rice: Acta Metall. Mater., 1992, vol. 40, pp. s321–s331.CrossRef G.E. Bletz and J.R. Rice: Acta Metall. Mater., 1992, vol. 40, pp. s321–s331.CrossRef
93.
Zurück zum Zitat D.M. Lepkin and G.E. Bletz: Acta Mater., 1996, vol. 44, pp. 1287–91.CrossRef D.M. Lepkin and G.E. Bletz: Acta Mater., 1996, vol. 44, pp. 1287–91.CrossRef
94.
Zurück zum Zitat A. Taha and P. Sofronis: Eng. Fract. Mech., 2001, vol. 68, pp. 803–37.CrossRef A. Taha and P. Sofronis: Eng. Fract. Mech., 2001, vol. 68, pp. 803–37.CrossRef
95.
Zurück zum Zitat K. Sadananda, K. Jagannadham, and M.J. Marcinkowski: Phys. Status Solidi (a), 1977, vol. A44, pp. 633–733CrossRef K. Sadananda, K. Jagannadham, and M.J. Marcinkowski: Phys. Status Solidi (a), 1977, vol. A44, pp. 633–733CrossRef
96.
Zurück zum Zitat H.G. Nelson: in Embrittlement of Engineering Alloys, C.L. Briant and S.K. Banerji, eds.; Treatise Mater. Sci. Technol., Academic Press, New York, NY, 1983, vol. 25, pp. 275–359. H.G. Nelson: in Embrittlement of Engineering Alloys, C.L. Briant and S.K. Banerji, eds.; Treatise Mater. Sci. Technol., Academic Press, New York, NY, 1983, vol. 25, pp. 275–359.
97.
Zurück zum Zitat J.C. Scully: in The Theory of Stress Corrosion of Alloys, J.C. Scully, ed., NATO Scientific Affairs Division, Brussels, 1971, pp. 127–66. J.C. Scully: in The Theory of Stress Corrosion of Alloys, J.C. Scully, ed., NATO Scientific Affairs Division, Brussels, 1971, pp. 127–66.
Metadaten
Titel
Review of Environmentally Assisted Cracking
verfasst von
K. Sadananda
A. K. Vasudevan
Publikationsdatum
01.02.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 2/2011
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-010-0472-3

Weitere Artikel der Ausgabe 2/2011

Metallurgical and Materials Transactions A 2/2011 Zur Ausgabe

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Environment-Assisted Cracking in Custom 465 Stainless Steel

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Role of Viscosity on Capillary Flow and Stress Corrosion Cracking Behavior

Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Microstructural Evolution and Stress Corrosion Cracking Behavior of Al-5083

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.