Skip to main content
Log in

Experimental Investigation of Magnesium-Base Nanocomposite Produced by Friction Stir Processing: Effects of Particle Types and Number of Friction Stir Processing Passes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this research, nanosized SiC and Al2O3 particles were added to as-cast AZ91 magnesium alloy, and surface nanocomposite layers with ultrafine-grained structure were produced via friction stir processing (FSP). Effects of reinforcing particle types and FSP pass number on the powder distribution pattern, microstructure, microhardness, and on tensile and wear properties of the developed surfaces were investigated. Results show that the created nanocomposite layer by SiC particles exhibits a microstructure with smaller grains and higher hardness, strength, and elongation compared to the layer by Al2O3 particles. SiC particles do not stick together and are distributed separately in the AZ91 matrix; however, distribution of SiC particles is not uniform in all parts of the stirred zone (SZ), which causes heterogeneity in microstructure, hardness, and wear mechanism of the layer. Al2O3 particles are agglomerated in the different points of matrix and create alumina clusters. However, distribution of Al2O3 clusters in all parts of the SZ is uniform and results in a uniform microstructure. In the specimen produced by one-pass FSP and SiC particles, the wear mechanism changes in different zones of SZ due to the nonuniform distribution of particles. However, in the specimen produced by Al2O3 particles, the wear mechanism in all parts of the SZ is the same and, in addition to the abrasive wear, delamination also occurs. Increasing FSP pass number results in improved distribution of particles, finer grains, and higher hardness, strength, elongation, and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. INSTRON is a trademark of Instron, Canton, MA.

References

  1. Y. Morisada, H. Fujji, T. Nagaoka, and M. Fukusumi: Mater. Sci. Eng. A, 2006, vol. 433, pp. 50–54.

    Article  Google Scholar 

  2. B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, and M.A. Omar: Mater. Proc. Technol., 2007, vol. 191, pp. 77–81.

    Article  CAS  Google Scholar 

  3. S.F. Hassan and M. Gupta: J. Alloys Compd., 2008, vol. 457, pp. 244–50.

    Article  CAS  Google Scholar 

  4. P. Asadi, G. Faraji, and M.K. Besharati: Int. J Adv. Manufact. Technol., 2010, vol. 51, pp. 247–60.

    Article  Google Scholar 

  5. A.H. Feng and Z.Y. Ma: Scripta Mater., 2007, vol. 56, pp. 397–400.

    Article  CAS  Google Scholar 

  6. A.H. Feng, B.L. Xiao, Z.Y. Ma, and R.S. Chen: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2447–56.

    Article  CAS  Google Scholar 

  7. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, and Y. Kojima: Mater. Sci. Eng. A, 2009, vol. 527, pp. 52–60.

    Article  Google Scholar 

  8. P. Asadi, M.K. Besharati Givi, K. Abrinia, M. Taherishargh, and R. Salekrostam: J. Mater. Eng. Perform., DOI:10.1007/s11665-011-9855-x.

  9. K. Funatani: Surf. Coat. Technol., 2000, vols. 133–134, pp. 264–72.

  10. R. Paskaramoorthy, S. Bugarin, and R. Reid: Comp. Struct., 2009, vol. 91, pp. 451–60.

    Article  Google Scholar 

  11. H.Z. Ye and X.Y. Liu: J. Alloys Compd., 2005, vol. 402, p. 162.

    Article  CAS  Google Scholar 

  12. H. Lianxi and W. Erde: Mater. Sci. Eng. A, 2000, vol. A278, p. 267.

    Google Scholar 

  13. M. Song and B. Huang: Mater. Sci. Eng. A, 2008, vol. 488, pp. 601–07.

  14. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki: Mater. Sci. Eng. A, 2009, vol. 500, pp. 84–91.

    Article  Google Scholar 

  15. B. Zahmatkesh and M.H. Enayati: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6734–40.

    Article  Google Scholar 

  16. J.M. Valverde, A. Castellanos, A. Ramos, and P.K. Watson: Phys. Rev. E, 2000, vol. 62 (5), pp. 6851–60.

    Article  CAS  Google Scholar 

  17. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58.

    Article  CAS  Google Scholar 

  18. C.F. Chen, P.W. Kao, L.W. Chang, and N.J. Ho: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 513–22.

    Article  CAS  Google Scholar 

  19. M. Yang, C. Xu, C. Wu, K.-c. Lin, Y. J. Chao, and L. An: J. Mater. Sci., 2010, vol. 45, pp. 4431–38.

  20. C.J. Lee, J.C. Huang, and P.J. Hsieh: Scripta Mater., 2006, vol. 54, pp. 1415–20.

    Article  CAS  Google Scholar 

  21. Y.X. Gan, D. Solomon, and M. Reinbolt: Materials, 2010, vol. 3, pp. 329–50.

  22. G. Cao, H. Konishi, and X. Li: Mater. Sci. Eng. A, 2008, vol. 486, pp. 357–62.

    Article  Google Scholar 

  23. P. Asadi, M.K. Besharati Givi, and G. Faraji: Mater. Manuf. Processes, 2010, vol. 25, pp. 1219–26.

    Article  CAS  Google Scholar 

  24. E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi: Wear, 2010, vol. 268, pp. 1111–21.

  25. P. Cavaliere and P.P. De Marco: J. Mater. Process. Technol., 2007, vol. 184, pp. 77–83.

    Article  CAS  Google Scholar 

  26. L. Cizek, M. Gregera, L. Pawlicaa, L.A. Dobrzanskib, and T. Tanskib: J. Mater. Proc. Technol., 2004, vols. 157–158, pp. 466–71.

    Article  Google Scholar 

  27. G. Nussbaum, P. Bridot, T.J. Warner, J. Charbonnier, and G. Regazzon: in Magnesium Alloys and Their Applications, B.L. Mordike and F. Hehmann, eds., DGM, 1992, pp. 351–58.

  28. D. Lahaie, J.D. Embury, M.M. Chadwich, and G.T. Gray: Scripta Metall., 1992, vol. 27, pp. 139–42.

    Article  CAS  Google Scholar 

  29. M. Barmouz, P. Asadi, M.K. BesharatiGivi, and M. Taherishargh: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1740–49.

    Article  Google Scholar 

  30. H. Chen and A.T. Alpas: Wear, 2000, vol. 246, pp. 106–16.

    Article  CAS  Google Scholar 

  31. W.-B. Lee, C.-Y. Lee, M.-K. Kim, J.-I. Yoon, Y.-J. Kim, Y.-M. Yoen, and S.-B. Jung: Compos. Sci. Technol., 2006, vol. 66, p. 1513.

  32. P. Bala Srinivasan, C. Blawert, and W. Dietzel: Wear, 2009, vol. 266, pp. 1241–47.

    Article  Google Scholar 

  33. J. An, R.G. Li, Y. Lu, C.M. Chen, Y. Xu, X. Chen, and L.M. Wang: Wear, 2008, vol. 265, pp. 97–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Special thanks must go to the Iranian Nanotechnology Initiative for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Asadi.

Additional information

Manuscript submitted October 7, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asadi, P., Faraji, G., Masoumi, A. et al. Experimental Investigation of Magnesium-Base Nanocomposite Produced by Friction Stir Processing: Effects of Particle Types and Number of Friction Stir Processing Passes. Metall Mater Trans A 42, 2820–2832 (2011). https://doi.org/10.1007/s11661-011-0698-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0698-8

Keywords

Navigation