Skip to main content
Log in

Quantitative Measurements of Grain Boundary Sliding in an Ultrafine-Grained Al Alloy by Atomic Force Microscopy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, quantitative measurements for grain boundary sliding (GBS) in ultrafine-grained (UFG) 5083 Al by atomic force microscopy (AFM) were performed. An ion beam polishing and etching technique was used to reveal grain boundaries in the alloy for AFM characterization. A comparison between the average grain sizes measured from AFM images and those estimated from transmission electron microscopy micrographs and electron backscatter diffraction (EBSD) maps showed excellent agreement. The vertical offset of GBS was measured by comparing predeformation and postdeformation AFM images. By analyzing these measurements, the contribution of GBS to the total tensile strain in 5083 Al was estimated as 25 pct at a strain rate of 10−4 seconds−1 and a temperature of 473 K (200 °C). It was demonstrated that the relatively low value of the contribution of GBS to the total strain is most likely the result of testing UFG 5083 Al under experimental conditions that favor the dominance of region I (low-stress region) of the sigmoidal behavior characterizing high-strain-rate superplasticity, which was reported previously for the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.G. Langdon and R.Z. Valiev: Prog. Mater. Sci., 2006, vol. 51. p. 881.

    Article  Google Scholar 

  2. M. Chauhan, I. Roy, E.J. Lavernia, and F.A. Mohamed: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2715-25.

    Article  CAS  Google Scholar 

  3. I. Roy, M. Chauhan, E. J. Lavernia, and F.A. Mohamed: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 721-30.

    Article  CAS  Google Scholar 

  4. B.P. Kasyap and A.K. Mukherjee: Res. Mech., 1986, vol. 17. pp. 293-355.

    Google Scholar 

  5. N. Ridley, D.W. Livesey, and A.K. Mukherjee: J. Mater. Sci., 1984, vol. 19, pp. 1321-32.

    Article  CAS  Google Scholar 

  6. X.G. Jiang, J.C. Earthman, and F.A. Mohamed: J. Mater. Sci., 1994, vol. 29, pp. 5499-514.

    Article  CAS  Google Scholar 

  7. A. Ayensu and T.G. Langdon: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 901-07.

    Article  CAS  Google Scholar 

  8. R.B. Vastava and T.G. Langdon: Acta Metall., 1979, vol. 27, pp. 251-57.

    Article  CAS  Google Scholar 

  9. T.G. Langdon: Metall. Trans. A, 1982, vol. 13, pp. 689-701.

    Article  CAS  Google Scholar 

  10. Z.R. Lin, A.H. Chokshi, and T.G. Langdon: J. Mater. Sci., 1988, vol. 23, pp. 2712-22.

    Article  CAS  Google Scholar 

  11. K. Duong and F.A. Mohamed: Acta Metall., 1998, vol. 46, pp. 4571-86.

    Google Scholar 

  12. K. Duong and F.A. Mohamed: Metall. Mater. Trans. A, 2000, vol. 32A, pp. 103-13.

    Google Scholar 

  13. T.G. Langdon: J. Mater. Sci., 2006, vol. 41, pp. 597-609.

    Article  CAS  Google Scholar 

  14. W.W. Gerberich, S.E. Harvey, D.E. Kramer, and J. W. Hoehn: Acta Mater., 1998, vol. 46, pp. 5007-21.

    Article  CAS  Google Scholar 

  15. L. Cretegny and A. Saxena: Acta Mater, 2001, vol. 49, pp. 3755-65.

    Article  CAS  Google Scholar 

  16. Y. Choi, W.Y. Choo, and D. Kwon: Scripta Mater., 2001, vol. 45, pp. 1401-06.

    Article  CAS  Google Scholar 

  17. Y. Huang and T.G. Langdon: J. Mater. Sci., 2002, vol. 37, pp. 4993-98.

    Article  CAS  Google Scholar 

  18. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 938-44.

    Article  CAS  Google Scholar 

  19. L. Clarisse, A. Bataille, Y. Pennec, J. Crampon, and R. Duclos: Ceramics Int., 1999, vol. 25, pp. 389-94.

    Article  CAS  Google Scholar 

  20. V. Randle: Advances in Images and Electron Physics, vol. 151, Elsevier, Amsterdam, The Netherlands, 2008, pp. 263-411.

    Google Scholar 

  21. I. Roy, H. Yang, L. Dinh, I. Lund, J. Earthman, and F.A. Mohamed: Scripta Mater., 2008, vol 59, no. 3, p. 305.

  22. A. Torrents, H. Yang, and F.A. Mohamed: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 621-30.

    Article  CAS  Google Scholar 

  23. I. Roy, S. Dheda, and F.A. Mohamed: University of California, Irvine, 2011, unpublished research.

  24. R.L. Bell, C. Graeme-Barber, and T.G. Langdon: AIME Met. Soc. Trans., 1967, vol. 239, pp. 1821-24.

    CAS  Google Scholar 

  25. R.C. Gifkins: Superplastic Forming of Structural Alloys, N.E. Paton and C.H. Hamilton, eds., Metallurgical Society of AIME, San Diego, CA, 1982, pp. 2–26.

  26. F.A. Mohamed and T.G. Langdon: Acta. Metall., 1975, vol. 23, pp. 117-24.

    Article  CAS  Google Scholar 

  27. F.A. Mohamed, S.A. Shei, and T.G. Langdon: Acta. Metall., 1975, vol. 23, pp. 1443-50.

    Article  CAS  Google Scholar 

  28. F.A. Mohamed and T.G. Langdon: Phil. Mag., 1975, vol. 32, pp. 697-709.

    Article  CAS  Google Scholar 

  29. S.H. Vale, D.J. Eastgate, and P.M. Hazzledine: Scripta Metall., 1979, vol. 13, pp. 1157-62.

    Article  CAS  Google Scholar 

  30. D.W. Livesey and N. Ridley: Scripta Metall., 1982, vol. 16, pp. 165-68.

    Article  CAS  Google Scholar 

  31. S.A. Shei and T.G. Langdon: Acta. Metall., 1978, vol. 26, pp. 638-46.

    Google Scholar 

  32. A.H. Chokshi and T.G. Langdon: Metall. Trans. A, 1988, vol. 19A, pp. 2487-96.

    CAS  Google Scholar 

  33. S. Yan, J.C. Earthman, and F.A. Mohamed: Phil. Mag., 1994, vol. 69, pp. 1017-38.

    Article  CAS  Google Scholar 

  34. A.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103-89.

    Article  CAS  Google Scholar 

  35. C. Suranarayana: Mechanical Alloying and Milling, Marcel Dekker, Inc., New York, NY, 2004, pp. 333-58.

    Google Scholar 

  36. D.B. Witkin and E.J. Lavernia: Progr. Mater. Sci., 2006, vol. 51, no. 1, pp. 1-60.

    Article  CAS  Google Scholar 

  37. F.A. Mohamed: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1431-35.

    Article  Google Scholar 

  38. F.A. Mohamed: J. Mater. Sci., 1983, vol. 18, pp. 582-92.

    Article  Google Scholar 

  39. Y. Li, S.R. Nutt, and F.A. Mohamed: Acta Mater., 1997, vol. 45, pp. 2607-20.

    Article  CAS  Google Scholar 

  40. K.T. Park, E.J. Lavernia, and F.A. Mohamed: Acta Metall. Mater., 1990, vol. 38, pp. 2149-59.

    Article  CAS  Google Scholar 

  41. H. Gleiter and B. Chalmers: Progr. Mater. Sci., 1972, vol. 16, pp. 1-12.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant DMR-0702978 from the National Science foundation. The authors wish to acknowledge the assistance given by Dr. David Witkin in preparing the material. Also, thanks are due to graduate student Shehreen Dheda for useful suggestions, to South Bay Technology for using characterization facilities, and to LEXI in Calit2 at the University of California, Irvine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farghalli A. Mohamed.

Additional information

Manuscript submitted December 7, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J.H., Mohamed, F.A. Quantitative Measurements of Grain Boundary Sliding in an Ultrafine-Grained Al Alloy by Atomic Force Microscopy. Metall Mater Trans A 42, 3969–3978 (2011). https://doi.org/10.1007/s11661-011-0871-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0871-0

Keywords

Navigation