Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2014

01.01.2014

Selective Laser Melting Additive Manufacturing of Ti-Based Nanocomposites: The Role of Nanopowder

verfasst von: Dongdong Gu, Hongqiao Wang, Guoquan Zhang

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The additive manufacturing of bulk-form TiC/Ti nanocomposite parts was performed using Selective Laser Melting (SLM). Two categories of nanopowder, i.e., ball-milled TiC/Ti nanocomposite powder and directly mechanical mixed nano-TiC/Ti powder, were used for SLM. The influences of nanopowder characteristics and laser processing parameters on the densification behavior, microstructural features, and tribological properties of the SLM-processed TiC/Ti nanocomposite parts were studied. The study showed that the densification of TiC/Ti nanocomposite parts was affected by both laser energy density and powder categories. Using an insufficient laser energy density of 0.25 kJ/m lowered SLM densification rate, because of the occurrence of balling effect. An increase in the laser energy density above 0.33 kJ/m produced near fully dense SLM parts. The SLM densification levels of the ball-milled TiC/Ti nanocomposite powder were generally higher than that of the directly mixed nano-TiC/Ti powder. The TiC-reinforcing phase in SLM-processed TiC/Ti parts typically had a lamellar nanostructure with a nanoscale thickness, completely differing from the starting nanoparticle morphology before SLM. The lamellar nanostructure of the TiC reinforcement in SLM-processed ball-milled TiC/Ti nanocomposite parts could be maintained within a wide range of laser energy densities. However, the microstructures of the SLM-processed, directly mixed nano-TiC/Ti powder were sensitive to SLM parameters, and the TiC reinforcement experienced a successive change from the lamellar nanostructure to the relatively coarsened dendritic microstructure as laser energy density increased. A combination of the sufficiently high SLM densification rate and the formation of the nanostructured TiC reinforcement favored the improvement of the tribological property, leading to the considerably low coefficient of friction of 0.22 and wear rate of 2.8 × 10−16 m3 N−1 m−1. The coarsening and resultant disappearance of nanoscale TiC reinforcement in SLM-consolidated directly mixed nano-TiC/Ti powder at a high laser energy density lowered the tribological performance considerably.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.CrossRef T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.CrossRef
2.
Zurück zum Zitat J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: CIRP Ann. Manuf. Technol., 2007, vol. 56, pp. 730–59.CrossRef J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: CIRP Ann. Manuf. Technol., 2007, vol. 56, pp. 730–59.CrossRef
3.
Zurück zum Zitat D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133–64.CrossRef D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133–64.CrossRef
4.
Zurück zum Zitat P. Yu, M. Yan, G.B. Schaffer, and M. Qian: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2417–24.CrossRef P. Yu, M. Yan, G.B. Schaffer, and M. Qian: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2417–24.CrossRef
5.
Zurück zum Zitat B. Zheng, J.E. Smugeresky, Y. Zhou, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1196–205.CrossRef B. Zheng, J.E. Smugeresky, Y. Zhou, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1196–205.CrossRef
6.
Zurück zum Zitat B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2237–45.CrossRef B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2237–45.CrossRef
7.
Zurück zum Zitat V.D. Manvatkar, A.A. Gokhale, G. Jagan Reddy, A. Venkataramana, and A. De: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 4080–87.CrossRef V.D. Manvatkar, A.A. Gokhale, G. Jagan Reddy, A. Venkataramana, and A. De: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 4080–87.CrossRef
8.
Zurück zum Zitat W.P. Liu and J.N. DuPont: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1133–40. W.P. Liu and J.N. DuPont: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1133–40.
9.
Zurück zum Zitat R. Banerjee, A. Genç, P.C. Collins, and H.L. Fraser: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2143–52.CrossRef R. Banerjee, A. Genç, P.C. Collins, and H.L. Fraser: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2143–52.CrossRef
10.
Zurück zum Zitat B.V. Krishna, S. Bose, and A. Bandyopadhyay: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1096–103.CrossRef B.V. Krishna, S. Bose, and A. Bandyopadhyay: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1096–103.CrossRef
11.
Zurück zum Zitat I. Yadroitsev, L. Thivillon, Ph. Bertrand, and I. Smurov: Appl. Surf. Sci., vol. 254, pp. 980–83. I. Yadroitsev, L. Thivillon, Ph. Bertrand, and I. Smurov: Appl. Surf. Sci., vol. 254, pp. 980–83.
12.
Zurück zum Zitat K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson: J. Mater. Process Technol., 2008, vol. 195, pp. 77–87.CrossRef K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson: J. Mater. Process Technol., 2008, vol. 195, pp. 77–87.CrossRef
13.
Zurück zum Zitat P. Fox, S. Pogson, C.J. Sutcliffe, and E. Jones: Surf. Coat Technol., 2008, vol. 202, pp. 5001–07.CrossRef P. Fox, S. Pogson, C.J. Sutcliffe, and E. Jones: Surf. Coat Technol., 2008, vol. 202, pp. 5001–07.CrossRef
14.
Zurück zum Zitat C.Z. Yan, L. Hao, A. Hussein, and D. Raymont: Int. J. Mach. Tools Manuf., 2012, vol. 62, pp. 32–38.CrossRef C.Z. Yan, L. Hao, A. Hussein, and D. Raymont: Int. J. Mach. Tools Manuf., 2012, vol. 62, pp. 32–38.CrossRef
15.
Zurück zum Zitat D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Acta Mater., 2012, vol. 60, pp. 3849–60.CrossRef D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Acta Mater., 2012, vol. 60, pp. 3849–60.CrossRef
16.
Zurück zum Zitat M. Zhong and W. Liu: Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 2010, vol. 224, pp. 1041–60.CrossRef M. Zhong and W. Liu: Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 2010, vol. 224, pp. 1041–60.CrossRef
17.
Zurück zum Zitat M. Das, V.K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay: Scripta Mater., 2010, vol. 63, pp. 438–41.CrossRef M. Das, V.K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay: Scripta Mater., 2010, vol. 63, pp. 438–41.CrossRef
18.
19.
Zurück zum Zitat S.R. Athreya, K. Kalaitzidou, and S. Das: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2637–42.CrossRef S.R. Athreya, K. Kalaitzidou, and S. Das: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2637–42.CrossRef
20.
Zurück zum Zitat S. Dadbakhsh and L. Hao: Adv. Eng. Mater., 2012, vol. 14, pp. 45–48.CrossRef S. Dadbakhsh and L. Hao: Adv. Eng. Mater., 2012, vol. 14, pp. 45–48.CrossRef
21.
Zurück zum Zitat S.S. Singh, D. Roy, R. Mitra, R.V. Subba Rao, R.K. Dayal, B. Raj, I. Manna: Mater. Sci. Eng. A, 2009, vol. 501, pp. 242–47.CrossRef S.S. Singh, D. Roy, R. Mitra, R.V. Subba Rao, R.K. Dayal, B. Raj, I. Manna: Mater. Sci. Eng. A, 2009, vol. 501, pp. 242–47.CrossRef
22.
Zurück zum Zitat V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal: Mater. Sci. Eng. R, 2006, vol. 54, pp.121–285.CrossRef V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal: Mater. Sci. Eng. R, 2006, vol. 54, pp.121–285.CrossRef
23.
Zurück zum Zitat A. Mortensen and J. Llorca: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 243–70.CrossRef A. Mortensen and J. Llorca: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 243–70.CrossRef
24.
Zurück zum Zitat S.K. Kumar and R. Krishnamoorti: Annu. Rev. Chem. Biomol. Eng., 2010, vol. 1, pp. 37–58.CrossRef S.K. Kumar and R. Krishnamoorti: Annu. Rev. Chem. Biomol. Eng., 2010, vol. 1, pp. 37–58.CrossRef
25.
26.
Zurück zum Zitat M. Sherif El-Eskandarany, M. Omori, T. Hirai, T.J. Konno, K. Sumiyama, and K. Suzuki: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 157–64.CrossRef M. Sherif El-Eskandarany, M. Omori, T. Hirai, T.J. Konno, K. Sumiyama, and K. Suzuki: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 157–64.CrossRef
27.
Zurück zum Zitat I.V. Alexandrov, R.K. Islamgaliev, R.Z. Valiev, Y.T. Zhu, and T.C. Lowe: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2253–60.CrossRef I.V. Alexandrov, R.K. Islamgaliev, R.Z. Valiev, Y.T. Zhu, and T.C. Lowe: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2253–60.CrossRef
28.
Zurück zum Zitat P. Asadi, G. Faraji, A. Masoumi, and M.K. Besharati Givi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2820–32.CrossRef P. Asadi, G. Faraji, A. Masoumi, and M.K. Besharati Givi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2820–32.CrossRef
29.
Zurück zum Zitat V. Udhayabanu, K.R. Ravi, K. Murugan, D. Sivaprahasam, and B.S. Murty: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2085–93.CrossRef V. Udhayabanu, K.R. Ravi, K. Murugan, D. Sivaprahasam, and B.S. Murty: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2085–93.CrossRef
30.
Zurück zum Zitat A.A.M. da Silva, J.F. dos Santos, and T.R. Strohaecker: Compos. Sci. Technol., 2005, vol. 65, pp. 1749–55.CrossRef A.A.M. da Silva, J.F. dos Santos, and T.R. Strohaecker: Compos. Sci. Technol., 2005, vol. 65, pp. 1749–55.CrossRef
31.
Zurück zum Zitat L. Xiao, W. Lu, J. Qin, Y. Chen, D. Zhang, M. Wang, F. Zhu, B. Ji: Compos. Sci. Technol., 2009, vol. 69, pp. 1925–31.CrossRef L. Xiao, W. Lu, J. Qin, Y. Chen, D. Zhang, M. Wang, F. Zhu, B. Ji: Compos. Sci. Technol., 2009, vol. 69, pp. 1925–31.CrossRef
32.
Zurück zum Zitat D.D. Gu, G.B. Meng, C. Li, W. Meiners, and R. Poprawe: Scripta Mater., 2012, vol. 67, pp. 185–88.CrossRef D.D. Gu, G.B. Meng, C. Li, W. Meiners, and R. Poprawe: Scripta Mater., 2012, vol. 67, pp. 185–88.CrossRef
33.
Zurück zum Zitat D.D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Compos. Sci. Technol., 2011, vol. 71, pp. 1612–20.CrossRef D.D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Compos. Sci. Technol., 2011, vol. 71, pp. 1612–20.CrossRef
34.
Zurück zum Zitat A. Simchi, F. Petzoldt, and H. Pohl: J. Mater. Process Technol., 2003, vol. 141, pp. 319–28.CrossRef A. Simchi, F. Petzoldt, and H. Pohl: J. Mater. Process Technol., 2003, vol. 141, pp. 319–28.CrossRef
35.
Zurück zum Zitat D.D. Gu and Y.F. Shen: J. Alloys Compd., 2009, vol. 473, pp. 107–15.CrossRef D.D. Gu and Y.F. Shen: J. Alloys Compd., 2009, vol. 473, pp. 107–15.CrossRef
36.
Zurück zum Zitat M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow: Rapid Prototyping J., 1995, vol. 1, pp. 26–36.CrossRef M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow: Rapid Prototyping J., 1995, vol. 1, pp. 26–36.CrossRef
37.
Zurück zum Zitat A. Simchi, F. Petzoldt, and H. Pohl: Int. J. Powder Metall., 2001, vol. 37, pp. 49–61. A. Simchi, F. Petzoldt, and H. Pohl: Int. J. Powder Metall., 2001, vol. 37, pp. 49–61.
38.
Zurück zum Zitat N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, and M.B. Ignatiev: Rapid Prototyping J., 2004, vol. 10, pp. 78–87.CrossRef N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, and M.B. Ignatiev: Rapid Prototyping J., 2004, vol. 10, pp. 78–87.CrossRef
39.
40.
Zurück zum Zitat P.M. Ajayan, L.S. Schadler, and P.V. Braun: Nanocomposite Science and Technology, 1st ed., Wiley-VCH, Weinheim, Germany, 2003.CrossRef P.M. Ajayan, L.S. Schadler, and P.V. Braun: Nanocomposite Science and Technology, 1st ed., Wiley-VCH, Weinheim, Germany, 2003.CrossRef
41.
Zurück zum Zitat P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon: Acta Mater., 2003, vol. 51, pp. 1651–62.CrossRef P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon: Acta Mater., 2003, vol. 51, pp. 1651–62.CrossRef
42.
Zurück zum Zitat I. Takamichi and I.L.G. Roderick: The Physical Properties of Liquid Metals, 1st ed., Clarendon Press, Oxford, UK, 1993. I. Takamichi and I.L.G. Roderick: The Physical Properties of Liquid Metals, 1st ed., Clarendon Press, Oxford, UK, 1993.
43.
Zurück zum Zitat Y.T. Chan and S.K. Choi: J. Appl. Phys., 1992, vol. 72, pp. 3741–49.CrossRef Y.T. Chan and S.K. Choi: J. Appl. Phys., 1992, vol. 72, pp. 3741–49.CrossRef
44.
Zurück zum Zitat J. Tille and J.C. Kelly: Brit. J. Appl. Phys., 1963, vol. 14, pp. 717–19.CrossRef J. Tille and J.C. Kelly: Brit. J. Appl. Phys., 1963, vol. 14, pp. 717–19.CrossRef
45.
Zurück zum Zitat H.J. Niu and I.T.H. Chang: Scripta Mater., 1999, vol. 41, pp. 1229–34.CrossRef H.J. Niu and I.T.H. Chang: Scripta Mater., 1999, vol. 41, pp. 1229–34.CrossRef
47.
Zurück zum Zitat V.V. Semak, G.A. Knorovsky, D.O. MacCallum, and R. Allen Roach: J. Phys. D Appl. Phys., 2006, vol. 39, pp. 590–95.CrossRef V.V. Semak, G.A. Knorovsky, D.O. MacCallum, and R. Allen Roach: J. Phys. D Appl. Phys., 2006, vol. 39, pp. 590–95.CrossRef
48.
Zurück zum Zitat L.R. Xu and S. Sengupta: J. Nanosci. Nanotechnol., 2005, vol. 5, pp. 620–26.CrossRef L.R. Xu and S. Sengupta: J. Nanosci. Nanotechnol., 2005, vol. 5, pp. 620–26.CrossRef
Metadaten
Titel
Selective Laser Melting Additive Manufacturing of Ti-Based Nanocomposites: The Role of Nanopowder
verfasst von
Dongdong Gu
Hongqiao Wang
Guoquan Zhang
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2014
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-013-1968-4

Weitere Artikel der Ausgabe 1/2014

Metallurgical and Materials Transactions A 1/2014 Zur Ausgabe

Symposium: Neutron and X-Ray Studies of Advanced Materials VI: Diffraction Centennial and Beyond

Foreword

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.