Skip to main content
Log in

Effect of Process Variables on the Grain Size and Crystallographic Texture of Hot-Dip Galvanized Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A galvanizing simulator was used to determine the effect of galvanizing bath antimony (Sb) content, substrate surface roughness, and cooling rate on the microstructural development of metallic zinc coatings. Substrate surface roughness was varied through the use of relatively rough hot-rolled and relatively smooth bright-rolled steels, cooling rates were varied from 0.1 to 10 K/s, and bulk bath Sb levels were varied from 0 to 0.1 wt pct. In general, it was found that increasing bath Sb content resulted in coatings with a larger grain size and strongly promoted the development of coatings with the close-packed {0002} basal plane parallel to the substrate surface. Increasing substrate surface roughness tended to decrease the coating grain size and promoted a more random coating crystallographic texture, except in the case of the highest Sb content bath (0.1 wt pct Sb), where substrate roughness had no significant effect on grain size except at higher cooling rates (10 K/s). Increased cooling rates tended to decrease the coating grain size and promote the {0002} basal orientation. Calculations showed that increasing the bath Sb content from 0 to 0.1 wt pct Sb increased the dendrite tip growth velocity from 0.06 to 0.11 cm/s by decreasing the solid–liquid interface surface energy from 0.77 to 0.45 J/m2. Increased dendrite tip velocity only partially explains the formation of larger zinc grains at higher Sb levels. It was also found that the classic nucleation theory cannot completely explain the present experimental observations, particularly the effect of increasing the bath Sb, where the classical theory predicts increased nucleation and a finer grain size. In this case, the “poisoning” theory of nucleation sites by segregated Sb may provide a partial explanation. However, any analysis is greatly hampered by the lack of fundamental thermodynamic information such as partition coefficients and surface energies and by a lack of fundamental structural studies. Overall, it was concluded that the fundamental mechanisms behind the microstructural development of solidified metallic zinc coatings have yet to be completely elucidated and require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A.R. Marder: Prog. Mater Sci., 2000, vol. 45, pp. 191-271.

    Article  Google Scholar 

  2. A. Szabo and E. Denes: Mater. Sci. Forum, 2003, vols. 414-415, pp. 45-50.

    Article  Google Scholar 

  3. J. Strutzenberger and J. Faderl: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 631-646.

    Article  Google Scholar 

  4. H. Leidheiser Jr and D.K. Kim: JOM, 1976, vol. 28, pp. 19-25.

    Google Scholar 

  5. S. Chang and J.C. Shin: Galvatech’95 Conf. Proc., Chicago, IL, 1995, Iron and Steel Society, Warrendale, PA, 1995, pp. 783–86.

  6. J.D. Culcasia, C.I. Elsner, A.R. Di Sarli: Mater. Res., 2009, vol. 12, pp. 273-279.

    Article  Google Scholar 

  7. D. Jaffrey, J.D. Browne, T.J. Howard: Metall. Trans. B, 1980, vol. 11B, pp. 631-635.

    Article  Google Scholar 

  8. M. Dutta, S. Ganguly, G. Jha, A.K. Singh, S. Chakrabarti, N. Rajesh: ISIJ Int., 2005, vol. 45, pp. 366-372.

    Article  Google Scholar 

  9. F.A. Fasoyinu and F. Weinberg: Metall. Trans. B, 1990, vol. 21B, pp. 549-558.

    Article  Google Scholar 

  10. D.I. Cameron and G.J. Harvey: Proc. 8th Int. Hot Dip Galvanizing Conf., London, Zinc Development Association, London, 1967, pp. 86–97.

  11. J. Zervoudis and G. Anderson: T. Ltd: 6th Asia Pacific General Galvanizing Conf., Cairns, 2005, pp. 1–17.

  12. P.R. Sere, J.D. Culcasi, C.I. Elsner, A.R. Di Sarli: Rev. Metal., 1997, vol. 33, pp. 376-381.

    Article  Google Scholar 

  13. A. Semoroz, L. Strezov and M. Rappaz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2695-2701.

    Article  Google Scholar 

  14. N.J. Wall, J.A. Spittle, and R.D. Jones: Proc. 1st lnt. Conf. Zinc Coated Steel Sheet, Munich, June 1985, Zinc Develop Association, London, 1985.

  15. S. Maeda, T. Asai, S. Fujii, Y. Nomura and A. Nomoto, J. Adhesion Sci. Techno., 1988, vol. 2, p. 271.

    Article  Google Scholar 

  16. A.W. Shafter, K. Reinsch, K. Beuermann, K.A. Misselt, D.A.H. Barwitz, and A.D. Schwope: APJ, 1995, pp. 319–443.

  17. G.E. Nash and M.E. Glicksman: Acta Metall., 1974, vol. 22, pp. 1283-1291.

    Article  Google Scholar 

  18. J.R. McDermid, M.H. Kaye, W.T. Thompson: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 215-230.

    Article  Google Scholar 

  19. ASTM Standards, A 90/A 90M, Standard Test Method for Weight [mass] of Coating on Iron and Steel Articles with Zinc or Zinc-alloy Coatings, ASTM International, West Conshohocken, PA.

  20. S. Alibeigi, R. Kavitha, R.J. Meguerian and J.R. McDermid: Acta Mat., 2011, vol. 59, pp. 3537-3549.

    Article  Google Scholar 

  21. G.F. Vander: Metallography, Principles and Practice, McGraw-Hill Book Co, New York, NY, 1984

    Google Scholar 

  22. G.F. Vander Voort: Metallography, Principles and Practice, ASM International, Materials Park, OH, 1999, pp. 436–450.

    Google Scholar 

  23. W. A. Miller, G. J. C. Carpenter and G. A. Chadwick: Phil. Mag., 1969, vol. 19, no. 158, pp. 305-319.

    Article  Google Scholar 

  24. L. Chen, R. Fourmentin and J.R. McDermid: Metall. Mater. Trans. A, vol. 39A, 2008, pp. 2128-2142.

    Article  Google Scholar 

  25. E. Baril and G. L’Esperance: Metall. Mater. Trans. A, vol. 30A, 1999, pp. 681-695.

    Article  Google Scholar 

  26. P. Toussaint, L. Segers, R. Winand and M. Dubois: ISIJ Int., 1998, vol. 38, pp. 985 – 990.

    Article  Google Scholar 

  27. Y.H. Liu and N.Y. Tang: Galvatech‘04 Conf. Proc., Chicago, IL, Association for Iron and Steel Technology, Warrendale, PA, 2004, pp. 941–50.

  28. J. Lipton, M.E. Glickman and W. Kurz: Mat. Sci. Eng., 1984, vol. 65, pp. 57-63.

    Article  Google Scholar 

  29. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida: J. Ph. Equil., 2000, vol. 21, no. 5, pp. 432-445.

    Article  Google Scholar 

  30. D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, 2nd ed., Van Nostrand Reinhold, UK, 1981, pp. 185-197.

    Google Scholar 

  31. J.R. McDermid, A.N. Hrymak. R. Fourmentin, S. Salari, and F.E. Goodwin: AISTech 2009 Conf. Proc., vol. II, Association for Iron and Steel Technology, Warrendale, PA, 2009, pp. 259–67.

Download references

Acknowledgments

The authors would like to thank US Steel Canada, Xstrata Zinc, the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support of the NSERC/US Steel Canada/Xstrata Zinc Industrial Research Chair in Zinc-Coated Advanced Steels and the members of the McMaster Steel Research Center for their provision of experimental substrates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. McDermid.

Additional information

Manuscript submitted October 15, 2010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaboli, S., McDermid, J.R. Effect of Process Variables on the Grain Size and Crystallographic Texture of Hot-Dip Galvanized Coatings. Metall Mater Trans A 45, 3938–3953 (2014). https://doi.org/10.1007/s11661-014-2359-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2359-1

Keywords

Navigation