Skip to main content
Log in

Effects of Mechanical Vibration and Wall Thickness on Microstructure and Mechanical Properties of AZ91D Magnesium Alloy Processed by Expendable Pattern Shell Casting

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mechanical vibration was introduced into the solidification process of AZ91D magnesium alloy during the expendable pattern shell casting process, and the combined effects of mechanical vibration and wall thickness on the microstructure and mechanical properties were investigated. The results indicate that with the increase of wall thickness, the morphologies in α-Mg phase and β-Mg17Al12 phase of the samples obtained without vibration evolved from a fine dendrite to a coarse dendrite and from a fine continuous network structure to a coarse continuous network structure, respectively, and the mechanical properties and density of AZ91D alloy continuously decreased. With the application of mechanical vibration, the coarser dendrites transformed into fine equiaxed grains, and the previous coarse continuous network structure of the β-Mg17Al12 phase was changed to a discontinuous granular morphology. Meanwhile, the mechanical properties and density of AZ91D alloy greatly increased. The effect of mechanical vibration on the microstructure and mechanical properties increased with increasing vibration frequency and wall thickness. The fractographs of the tensile samples show a change in fracture surface from brittle to that of a tough fracture with the addition of vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Z.M. Li, Q.G. Wang, A.A. Luo, P.H. Fu, L.M. Peng, Y.X. Wang, and G.H. Wu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5202–15.

    Article  Google Scholar 

  2. D.R. Ni, D.L. Chen, J. Yang, and Z.Y. Ma: Mater. Des., 2014, vol. 56, pp. 1–8.

    Article  Google Scholar 

  3. B.L. Yu and J.Y. Uan: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2245–52.

    Article  Google Scholar 

  4. H.A. Patel, D.L. Chen, S.D. Bhole, and K. Sadayappan: J. Alloys Compd., 2010, vol. 496, pp. 140–48.

    Article  Google Scholar 

  5. W.M. Jiang, Z.T. Fan, D.J. Liu, D.F. Liao, X.P. Dong, and X.M. Zong: Mater. Sci. Eng. A, 2013, vol. 560, pp. 396–403.

    Article  Google Scholar 

  6. W.M. Jiang, Z.T. Fan, and D.J. Liu: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 7–13.

    Article  Google Scholar 

  7. D.F. Liao, Z.T. Fan, W.M. Jiang, E.Q. Shen, and D.J. Liu: J. Mater. Process. Technol., 2011, vol. 211, pp. 1465–70.

    Article  Google Scholar 

  8. M.C. Ashton, S.G. Sharman, and A.J. Brookes: Mater. Des., 1984, vol. 5, pp. 66–67.

    Article  Google Scholar 

  9. W.M. Jiang, Z.T. Fan, D.F. Liao, X.P. Dong, and Z. Zhao: Int. J. Adv. Manuf. Technol., 2010, vol. 51, pp. 25–34.

    Article  Google Scholar 

  10. S. Candan, M. Unal, M. Turkmen, E. Koc, Y. Turen, and E. Candan: Mater. Sci. Eng. A, 2009, vol. 501, pp. 115–18.

    Article  Google Scholar 

  11. H. Yu, S.N. Chen, W. Yang, Y.L. Zhang, and S.H. Chen: J. Alloys Compd., 2014, vol. 589, pp. 479–84.

    Article  Google Scholar 

  12. M.J. Li, T. Tamura, N. Omura, and K. Miwa: J. Alloys Compd., 2009, vol. 487, pp. 187–93.

    Article  Google Scholar 

  13. M.J. Li, T. Tamura, and K. Miwa: J. Mater. Res., 2007, vol. 22, pp. 3465–74.

    Article  Google Scholar 

  14. A.M. Khosro, and B. Niroumand: J. Alloys Compd., 2011, vol. 509, pp. 114–22.

    Article  Google Scholar 

  15. X.B. Liu, Y. Osawa, S. Takamori, and T. Mukai: Mater. Sci. Eng. A, 2008, vol. 487, pp. 120–23.

    Article  Google Scholar 

  16. Z.W. Shao, Q.C. Le, Z.Q. Zhang, and J.Z. Cui: Mater. Des., 2011, vol. 32, pp. 4216–24.

    Article  Google Scholar 

  17. G. Chirita, I. Stefanescu, D. Soares, and F.S. Silva: Mater. Des., 2009, vol. 30, pp. 1575–80.

    Article  Google Scholar 

  18. A.F. Olufemi and I.S. Ademola: Int. J. Metall. Eng., 2012, vol. 1, pp. 40–43.

    Google Scholar 

  19. F. Taghavi, H. Saghafian, and Y.H.K. Kharrazi: Mater. Des., 2009, vol. 30, pp. 1604–11.

    Article  Google Scholar 

  20. H.M. Guo, A.S. Zhang, X.J. Yang, M.M. Yan, and Y. Ding: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 438–46.

    Article  Google Scholar 

  21. S.L. Lü, S.S. Wu, L. Wan, and P. An: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2735–45.

    Article  Google Scholar 

  22. W.M. Jiang, Z.T. Fan, Y.C. Dai, and C. Li: Mater. Sci. Eng. A, 2014, vol. 597, pp. 237–44.

    Article  Google Scholar 

  23. J. Campbell: Int. Mater. Rev., 1981, vol. 2, pp. 71–106.

    Article  Google Scholar 

  24. R.D. Doherty: Scripta Mater., 2003, vol. 49, pp. 1219–22.

    Article  Google Scholar 

  25. F. Taghavi, H. Saghafian, and Y.H.K. Kharrazi: Mater. Des., 2009, vol. 30, pp. 115–21.

    Article  Google Scholar 

  26. N. Abu-Dheir, M. Khraisheh, K. Saito, and A. Male: Mater. Sci. Eng. A, 2005, vol. 393, pp. 109–17.

    Article  Google Scholar 

  27. S. Lun Sin, D. Dubé, and R. Tremblay: Mater. Charact., 2008, vol. 59, pp. 178–87.

  28. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., New York, 1961, pp. 121–22.

    Google Scholar 

  29. K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, and X.S. Hu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7484–87.

    Article  Google Scholar 

  30. Z.F. Li, J. Dong, X.Q. Zeng, C. Lu, and W.J. Ding: Mater. Sci. Eng. A, 2007, vol. 466, pp. 134–39.

    Article  Google Scholar 

  31. T.J. Chen, L.K. Huang, X.F. Huang, Y. Ma, and Y. Hao: J. Alloys Compd., 2013, vol. 556, pp. 167–77.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Project 51204124 supported by the National Natural Science Foundation of China, Project P2015-09 supported by State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Project 2012M511610 & 2014T70694 supported by the China Postdoctoral Science Foundation, and Project K201415 supported by the Scientific Research Foundation of Wuhan Institute of Technology. The authors would also like to express their appreciation to the Analytical and Testing Center, HUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Jiang.

Additional information

Manuscript submitted September 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Fan, Z., Chen, X. et al. Effects of Mechanical Vibration and Wall Thickness on Microstructure and Mechanical Properties of AZ91D Magnesium Alloy Processed by Expendable Pattern Shell Casting. Metall Mater Trans A 46, 1776–1788 (2015). https://doi.org/10.1007/s11661-015-2746-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2746-2

Keywords

Navigation