Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 12/2015

14.09.2015

Thermodynamics-Based Selection and Design of Creep-Resistant Cast Mg Alloys

verfasst von: Saeideh Abaspour, Carlos H. Cáceres

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Atomic level thermodynamics arguments that account for the generally weak age hardening response while suggesting that extending the athermal regime through short-range order (SRO) is a most feasible path to increasing the creep strength of many current alloys are presented. The tendency, or otherwise, of many solutes to develop SRO in dilute solid solutions rationalizes a number of observations in current multicomponent Mg alloys, and in particular the retention of linear strain hardening at high temperatures, while it disputes the viability of several micromechanisms often considered active, such as pinning of edge dislocations by mobile solute clouds, dynamic precipitation of thermally stable precipitates, or atomic size effects on the diffusivity. Potential solutes are sorted out and ranked based on the sign and value of the enthalpy of mixing of binary solid solutions using the Miedema phenomenological scheme. Due to their large negative energy of mixing and reasonable solubility (>1 at. pct) at ~473 K (~200 °C), Y and Gd appear as the best candidates to increase the creep strength through SRO, followed by Nd and Ca, in close agreement with data reported in the literature. The feasibility of enhancing the age hardening response through homogeneously nucleated, coherent precipitates, in some cases despite the negative energy of mixing of the alloy, or via internally ordered precipitates mimicking those present in Mg-Th alloys is considered by making parallels with the Al-Zn and the Al-Cu alloy systems. The possible optimization of the strengthening of high pressure die cast alloys combining SRO and intergranular eutectics or of heat-treatable cast alloys through internally ordered precipitates and SRO is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The alleged valence mechanism is supposed to increase the yield strength of Mg-RE solutions through the introduction of a covalent component in the atomic bonding. This model, however, also predicts that Zn should harden Mg at the same (low) rate of Al, in contradiction with the experimental results of Figure 3.
 
2
SRO is expected in Mg-Al as well, but its strength is bounded by the low melting point of the Mg17Al12 intermetallic.[31]
 
3
The low values of the Hall-Petch friction stress in Mg-Zn,[48] and which are also accounted for by SRO effects on twinning, led some authors[32,37] to conclude that solid solution by Zn is below that of the RE, also against what Figure 3 shows.
 
4
It has been recently pointed out [49] that the RE increase the ductility more than Zn, which is not correct as can be seen by comparing the data of References 3133. That the alloys are more ductile than the pure Mg metal is yet another classic conclusion,[5053] stemming in this case from the solid solution softening of the prism planes, which being a general solid solution effect should apply equally well to all kinds of solutes, including the RE.
 
5
Mg-Sn is known to develop SRO,[42] hence its hardening rate should match that of Mg-Zn, but recent experiments[34] suggest otherwise, as shown by Figure 3. It is noted however that the specimens used in those experiments had only 4 to 5 grains across the cross sections, questioning the validity of the data for polycrystals.
 
6
A number of studies, e.g., Refs. [86], [90], [91] based their conclusions on specimens tested in the (gravity) as-cast condition. Cast microstructures are strongly geometry dependent, and since coring creates concentration gradients and disproportionate amounts of interdendritic eutectics, as-cast specimens seem hardly suitable to properly quantify solid solution strengthening, or any other micromechanisms, for that matter. This criticism does not apply to studies based on HPDC specimens, since in those cases what is measured, rather than material properties, are the properties of the casting cross section.[54]
 
7
The formation of the so called RE texture in Mg-RE Mg-Y and Mg-Ca alloys has also been ascribed to atomic size/solute segregation effects.[55,105,106]
 
8
This criticism can also be levered to the hypothesis that co-segregation of Gd and Zn atoms to form dimers in dilute Mg-Gd-Zn alloys blocks the edge components of mobile dislocations on the basal plane.[39] Alternatively, it may be argued that the co-segregation of Zn and Gd reinforces the SRO of the dilute Mg-Gd alloy, hence the hardening effect on both the screw and the edge components of mobile dislocations. (It is noted that Zn additions have no effects in concentrated Mg-Gd alloys.[1])
 
9
Using the Miedema-Niessen model, Bakker[110] showed that for solutes much smaller than the host, the reduction of effective atomic volume due to the charge transfer enables a significant fraction of the solute atoms to fast-diffuse as interstitials, i.e., the solute exhibits on average a faster than expected diffusion rate. However, when the difference in size between solute and host is less than the Hume-Rothery limit of ±15 pct the solute behaves strictly as substitutional and the diffusion is normally slow and size independent. Considering the similar atomic radius and c/a ratio of Mg and Zr[111] the diffusivity behavior of any solutes can in principle be expected to be similar for both hosts. Tendler and Abriata’s results also suggest that for solutes larger than the 15 pct limit, increased rather than decreased diffusivity can be expected, further denying the possibility of slower diffusivity of the larger RE, or any other larger substitutional solute, for that matter.
 
10
Solutes that lower the stacking fault energy are expected to have similar effects.[119,129] Possible RE effects on the SFE of Mg at the nano-scale have also been considered in recent work.[49,130]
 
11
Deep eutectics and the development of SRO already in the liquid correlate with the tendency to form metallic glasses in many Mg alloys.[40]
 
12
Pettifor’s Quantum Mechanics analysis[142] identified some contradiction in the fundamentals, but those do not detract from the practical value of the scheme as a (powerful) sorting and ranking tool.
 
13
For consistency with the original formulation, non-SI units (eV and d.u.) are used for the scheme.
 
14
Diagrams similar to that of Fig. 8 can be seen in Reference 144 for Fe, in Reference 28 for Mg and a generic one in Reference 138.
 
15
Save for Ni and B, the sorting of solutes in Figure 8 is consistent with the respective phase diagrams as per Figures 6(a) through (c). The mismatching cases are discussed in the Appendix.
 
16
Note that elements on the south sector are larger in size than Mg, something that led to the assumptions concerning atomic size effects on texture formation (see footnote ¶) and diffusivity at high temperature.
 
Literatur
1.
Zurück zum Zitat K. Maruyama, M. Suzuki, and S. Hiroyuki, Metallurgical and Materials Transactions A, 33A (2002) 875-882.CrossRef K. Maruyama, M. Suzuki, and S. Hiroyuki, Metallurgical and Materials Transactions A, 33A (2002) 875-882.CrossRef
2.
Zurück zum Zitat L. Sturkey, J.B. Clark, Journal of the Institute of Metals, 88 (1959) 177-181. L. Sturkey, J.B. Clark, Journal of the Institute of Metals, 88 (1959) 177-181.
4.
Zurück zum Zitat J.B. Clark, Transactions of Japan Institute of Metals, 9 Supplement (1968) 354-355. J.B. Clark, Transactions of Japan Institute of Metals, 9 Supplement (1968) 354-355.
5.
Zurück zum Zitat J. van der Planken, A. Deruyttere, Acta Metallurgica, 17 (1969) 451-454.CrossRef J. van der Planken, A. Deruyttere, Acta Metallurgica, 17 (1969) 451-454.CrossRef
6.
Zurück zum Zitat G. Mima, Y. Tanaka, Transactions of Japan Institute of Metals, 12 (1971) 323-328.CrossRef G. Mima, Y. Tanaka, Transactions of Japan Institute of Metals, 12 (1971) 323-328.CrossRef
8.
Zurück zum Zitat Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Acta Metallurgica Sinica (English Letters), 21 (2008) 313-328.CrossRef Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Acta Metallurgica Sinica (English Letters), 21 (2008) 313-328.CrossRef
9.
Zurück zum Zitat L.Y. Wei, G.L. Dunlop, H. Westengen, Metallurgical and Materials Transactions A, 26A (1995) 1705-1716.CrossRef L.Y. Wei, G.L. Dunlop, H. Westengen, Metallurgical and Materials Transactions A, 26A (1995) 1705-1716.CrossRef
10.
Zurück zum Zitat R. Wilson, C. Bettles, B.C. Muddle, J.F. Nie, Materials Science Forum, 419 (2003) 267-272.CrossRef R. Wilson, C. Bettles, B.C. Muddle, J.F. Nie, Materials Science Forum, 419 (2003) 267-272.CrossRef
13.
Zurück zum Zitat J.-F. Nie, Metallurgical and Materials Transactions A, 43 (2012) 3891-3939.CrossRef J.-F. Nie, Metallurgical and Materials Transactions A, 43 (2012) 3891-3939.CrossRef
14.
15.
Zurück zum Zitat C.R. Hutchinson, J.F. Nie, S. Gorsse, Metallurgical and Materials Transactions A, 36 (2005) 2093-2105.CrossRef C.R. Hutchinson, J.F. Nie, S. Gorsse, Metallurgical and Materials Transactions A, 36 (2005) 2093-2105.CrossRef
17.
Zurück zum Zitat L.B. Duffy, Foundry Trade Journal, 165 (1991) 319-321. L.B. Duffy, Foundry Trade Journal, 165 (1991) 319-321.
18.
Zurück zum Zitat C.H. Cáceres, D.M. Rovera, Journal of Light Metals, 1/3 (2001) 151-156.CrossRef C.H. Cáceres, D.M. Rovera, Journal of Light Metals, 1/3 (2001) 151-156.CrossRef
19.
Zurück zum Zitat R. Khosrhoshahi: in Proceedings of the Third International Magnesium Conference, G.W. Lorimer ed., Manchester, 1996, pp. 241–56 R. Khosrhoshahi: in Proceedings of the Third International Magnesium Conference, G.W. Lorimer ed., Manchester, 1996, pp. 241–56
20.
Zurück zum Zitat I.J. Polmear, Light Alloys,3rd ed., Edward Arnold, London, 1995, pp. 223-227. I.J. Polmear, Light Alloys,3rd ed., Edward Arnold, London, 1995, pp. 223-227.
22.
Zurück zum Zitat C.R. Hutchinson, S.P. Ringer, Metallurgical and Materials Transactions A, 31 (2000) 2721-2733.CrossRef C.R. Hutchinson, S.P. Ringer, Metallurgical and Materials Transactions A, 31 (2000) 2721-2733.CrossRef
23.
Zurück zum Zitat I. Polmear, Materials Forum, 28 (2004) 1-14. I. Polmear, Materials Forum, 28 (2004) 1-14.
24.
Zurück zum Zitat K.E. Nelson, Transactions of the American Foundrymen’s Society, 67 (1959) 610-613. K.E. Nelson, Transactions of the American Foundrymen’s Society, 67 (1959) 610-613.
25.
Zurück zum Zitat Q. Han, B.K. Kad, S. Viswanathan, Philosophical Magazine, 84 (2004) 3843-3860.CrossRef Q. Han, B.K. Kad, S. Viswanathan, Philosophical Magazine, 84 (2004) 3843-3860.CrossRef
27.
Zurück zum Zitat F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, 1989. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, 1989.
31.
33.
Zurück zum Zitat L. Gao, R.S. Chen, E.H. Han, Journal of Alloys and Compounds, 472 (2009) 234-240.CrossRef L. Gao, R.S. Chen, E.H. Han, Journal of Alloys and Compounds, 472 (2009) 234-240.CrossRef
34.
Zurück zum Zitat B.Q. Shi, R.S. Chen, W. Ke, Journal of Alloys and Compounds, 509 (2011) 3357-3362.CrossRef B.Q. Shi, R.S. Chen, W. Ke, Journal of Alloys and Compounds, 509 (2011) 3357-3362.CrossRef
35.
Zurück zum Zitat T. Hassel, F. Bach, and C. Krause: in Proceeding of the 7th International Conference on Mg Alloys & Their Applications, K.U. Kainer, ed., Dresden, 2007, pp. 789–95. T. Hassel, F. Bach, and C. Krause: in Proceeding of the 7th International Conference on Mg Alloys & Their Applications, K.U. Kainer, ed., Dresden, 2007, pp. 789–95.
36.
Zurück zum Zitat S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo, T. Mohri, Materials Transactions, 49 (2008) 952-956.CrossRef S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo, T. Mohri, Materials Transactions, 49 (2008) 952-956.CrossRef
37.
Zurück zum Zitat I. Toda-Caraballo, E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Materialia, 75 (2014) 287-296.CrossRef I. Toda-Caraballo, E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Materialia, 75 (2014) 287-296.CrossRef
39.
Zurück zum Zitat J. Nie, K. Oh-Ishi, X. Gao, K. Hono, Acta Materialia, 56 (2008) 6061-6076.CrossRef J. Nie, K. Oh-Ishi, X. Gao, K. Hono, Acta Materialia, 56 (2008) 6061-6076.CrossRef
40.
Zurück zum Zitat P. Haasen: Physical Metallurgy, Cambridge University Press, Cambridge, 1996, Chapter 4 and 5 P. Haasen: Physical Metallurgy, Cambridge University Press, Cambridge, 1996, Chapter 4 and 5
41.
Zurück zum Zitat D.S. Gencheva, A.A. Katsnel’son, L.L. Rokhlin, V.M. Silonov, F.A. Khavadzha, Fiz. metal. metalloved., 51 (1981) 788-793. D.S. Gencheva, A.A. Katsnel’son, L.L. Rokhlin, V.M. Silonov, F.A. Khavadzha, Fiz. metal. metalloved., 51 (1981) 788-793.
42.
Zurück zum Zitat S. Henes, V. Gerold, Zeitschrift fur Metallkunde, 53 (1962) 703-08. S. Henes, V. Gerold, Zeitschrift fur Metallkunde, 53 (1962) 703-08.
43.
Zurück zum Zitat V.M. Silonov, E.V. Evlyukhina, L.L. Rokhlin, Russian Physics Journal, 39 (1996) 622-625.CrossRef V.M. Silonov, E.V. Evlyukhina, L.L. Rokhlin, Russian Physics Journal, 39 (1996) 622-625.CrossRef
44.
Zurück zum Zitat L.A. Safronova, A.A. Katsnel’son, S.V. Sveshnikov, Y.M. L’Vov, Fiz. metal. metalloved., 43 (1977) 76-80. L.A. Safronova, A.A. Katsnel’son, S.V. Sveshnikov, Y.M. L’Vov, Fiz. metal. metalloved., 43 (1977) 76-80.
45.
Zurück zum Zitat N. Jha, A.K. Mishra, Journal of Alloys and Compounds, 329 (2001) 224-229.CrossRef N. Jha, A.K. Mishra, Journal of Alloys and Compounds, 329 (2001) 224-229.CrossRef
47.
49.
Zurück zum Zitat S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neugebauer, Acta Materialia, 70 (2014) 92-104.CrossRef S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neugebauer, Acta Materialia, 70 (2014) 92-104.CrossRef
50.
Zurück zum Zitat A. Akhtar, E. Teghtsoonian, Materials Transactions (JIM), 9, supplement (1968) 692-697. A. Akhtar, E. Teghtsoonian, Materials Transactions (JIM), 9, supplement (1968) 692-697.
51.
52.
53.
Zurück zum Zitat A. Akhtar, E. Teghtsoonian, Philosophical Magazine, 25 (1972) 897-916.CrossRef A. Akhtar, E. Teghtsoonian, Philosophical Magazine, 25 (1972) 897-916.CrossRef
55.
Zurück zum Zitat N. Stanford, Materials Science and Engineering A, 528 (2010) 314-322.CrossRef N. Stanford, Materials Science and Engineering A, 528 (2010) 314-322.CrossRef
58.
Zurück zum Zitat J.F. Nie, B.C. Muddle: in Materials 98, Institute of Materials Engineering Australasia, Melbourne, M. Ferry ed., 1998, pp. 567-571. J.F. Nie, B.C. Muddle: in Materials 98, Institute of Materials Engineering Australasia, Melbourne, M. Ferry ed., 1998, pp. 567-571.
59.
Zurück zum Zitat J.W. Martin, Micromechanisms in particle hardened alloys, Cambridge University Press, Cambridge, 1980, pp.50-64. J.W. Martin, Micromechanisms in particle hardened alloys, Cambridge University Press, Cambridge, 1980, pp.50-64.
60.
61.
Zurück zum Zitat C. Mendis, C. Bettles, M. Gibson, S. Gorsse, C. Hutchinson, Philosophical Magazine Letters, 86 (2006) 443-456.CrossRef C. Mendis, C. Bettles, M. Gibson, S. Gorsse, C. Hutchinson, Philosophical Magazine Letters, 86 (2006) 443-456.CrossRef
62.
Zurück zum Zitat C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Materials Science & Engineering A, 435 (2006) 163-171.CrossRef C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Materials Science & Engineering A, 435 (2006) 163-171.CrossRef
63.
Zurück zum Zitat H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, Journal of Alloys and Compounds, 440 (2007) 122-126.CrossRef H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, Journal of Alloys and Compounds, 440 (2007) 122-126.CrossRef
65.
69.
Zurück zum Zitat G. Feng and H. Yu: International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), IEEE, Harbin, Heilongjiang, 2011, pp. 4763–65 G. Feng and H. Yu: International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), IEEE, Harbin, Heilongjiang, 2011, pp. 4763–65
72.
Zurück zum Zitat A.A. Luo: in Magnesium Technology, H.I. Kaplan, ed., TMS, Seattle, 2002, pp. 42–48 A.A. Luo: in Magnesium Technology, H.I. Kaplan, ed., TMS, Seattle, 2002, pp. 42–48
73.
Zurück zum Zitat M.S. Dargusch, G.L. Dunlop, A.L. Bowles, K. Pettersen, P. Bakke, Metallurgical and Materials Transactions A, 35 (2004) 1905-1909.CrossRef M.S. Dargusch, G.L. Dunlop, A.L. Bowles, K. Pettersen, P. Bakke, Metallurgical and Materials Transactions A, 35 (2004) 1905-1909.CrossRef
74.
Zurück zum Zitat Y. Guangyin, S. Yangshan, Z. Weiming, Journal of Materials Science Letters, 18 (1999) 2055-2057.CrossRef Y. Guangyin, S. Yangshan, Z. Weiming, Journal of Materials Science Letters, 18 (1999) 2055-2057.CrossRef
75.
Zurück zum Zitat S.L. Couling: Metals Engineering Quarterly, (1972), pp. 7–13. S.L. Couling: Metals Engineering Quarterly, (1972), pp. 7–13.
76.
Zurück zum Zitat G.S. Foerster: Metals Engineering Quarterly, (1973), pp. 19–22. G.S. Foerster: Metals Engineering Quarterly, (1973), pp. 19–22.
77.
Zurück zum Zitat I.A. Anyanwu, S. Kamado, Y. Kojima, Materials Transactions, 42 (2001) 1212-1218.CrossRef I.A. Anyanwu, S. Kamado, Y. Kojima, Materials Transactions, 42 (2001) 1212-1218.CrossRef
79.
Zurück zum Zitat M.O. Pekguleryuz, A.A. Kaya, Advanced Engineering Materials, 5 (2003) 866-878.CrossRef M.O. Pekguleryuz, A.A. Kaya, Advanced Engineering Materials, 5 (2003) 866-878.CrossRef
81.
Zurück zum Zitat B. Smola, I. Stulíková, J. Pelcová, B.L. Mordike: in Proceedings of the 6th International Conference-Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley, Wolfsburg, 2006, pp. 43–48 B. Smola, I. Stulíková, J. Pelcová, B.L. Mordike: in Proceedings of the 6th International Conference-Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley, Wolfsburg, 2006, pp. 43–48
83.
Zurück zum Zitat J.R. Terbush, N.D. Saddock, J.W. Jones, T.M. Pollock, Metallurgical and Materials Transactions A, 41 (2010) 2435-2442.CrossRef J.R. Terbush, N.D. Saddock, J.W. Jones, T.M. Pollock, Metallurgical and Materials Transactions A, 41 (2010) 2435-2442.CrossRef
84.
Zurück zum Zitat S.W. Chung, H. Watanabe, W.-J. Kim, K. Higashi, Materials Transactions, 45 (2004) 1266-1271.CrossRef S.W. Chung, H. Watanabe, W.-J. Kim, K. Higashi, Materials Transactions, 45 (2004) 1266-1271.CrossRef
85.
Zurück zum Zitat L. Moreno, T. Nandy, J. Jones, J. Allison, T. Pollock: in Magnesium Technology, H.I. Kaplan, ed., TMS, 2002, pp. 111–16. L. Moreno, T. Nandy, J. Jones, J. Allison, T. Pollock: in Magnesium Technology, H.I. Kaplan, ed., TMS, 2002, pp. 111–16.
87.
Zurück zum Zitat F. Czerwinski (2008) Magnesium Injection Molding, Springer, New York Inc, 2008.CrossRef F. Czerwinski (2008) Magnesium Injection Molding, Springer, New York Inc, 2008.CrossRef
89.
Zurück zum Zitat R. Alizadeh, R. Mahmudi, Journal of Alloys and Compounds, 509 (2011) 9195-9199.CrossRef R. Alizadeh, R. Mahmudi, Journal of Alloys and Compounds, 509 (2011) 9195-9199.CrossRef
90.
Zurück zum Zitat J. Bai, Y. Sun, F. Xue, S. Xue, J. Qiang, T. Zhu, Journal of Alloys and Compounds, 437 (2007) 247-253.CrossRef J. Bai, Y. Sun, F. Xue, S. Xue, J. Qiang, T. Zhu, Journal of Alloys and Compounds, 437 (2007) 247-253.CrossRef
91.
Zurück zum Zitat B.-G. Moon, B.-S. You, Y.-D. Hahn, Current Nanoscience, 10 (2014) 108-113.CrossRef B.-G. Moon, B.-S. You, Y.-D. Hahn, Current Nanoscience, 10 (2014) 108-113.CrossRef
92.
Zurück zum Zitat S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scripta Materialia, 63 (2010) 698-703.CrossRef S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scripta Materialia, 63 (2010) 698-703.CrossRef
94.
Zurück zum Zitat M. Lentz, M. Klaus, R. Coelho, N. Schaefer, F. Schmack, W. Reimers, B. Clausen, Metallurgical and Materials Transactions A, 45 (2014) 5721-5735.CrossRef M. Lentz, M. Klaus, R. Coelho, N. Schaefer, F. Schmack, W. Reimers, B. Clausen, Metallurgical and Materials Transactions A, 45 (2014) 5721-5735.CrossRef
95.
Zurück zum Zitat M. Suzuki, H. Sato, K. Maruyama, H. Oikawa, Materials Science and Engineering A, 252 (1998) 248-255.CrossRef M. Suzuki, H. Sato, K. Maruyama, H. Oikawa, Materials Science and Engineering A, 252 (1998) 248-255.CrossRef
96.
Zurück zum Zitat W.P. Sun, J.J. Jonas, Acta Metallurgica et Materialia, 42 (1994) 283-92.CrossRef W.P. Sun, J.J. Jonas, Acta Metallurgica et Materialia, 42 (1994) 283-92.CrossRef
98.
Zurück zum Zitat L. Gao, R. Chen, and E. Han: in Magnesium Technology, S.R. Agnew, E.A. Nyberg, N.R. Neelameggham and M.O. Pekguleryuz, eds., TMS, San Francisco, 2009, pp. 269–72 L. Gao, R. Chen, and E. Han: in Magnesium Technology, S.R. Agnew, E.A. Nyberg, N.R. Neelameggham and M.O. Pekguleryuz, eds., TMS, San Francisco, 2009, pp. 269–72
99.
Zurück zum Zitat D. Choudhuri, D. Jaeger, M.A. Gibson, R. Banerjee, Scripta Materialia, 86 (2014) 32-35.CrossRef D. Choudhuri, D. Jaeger, M.A. Gibson, R. Banerjee, Scripta Materialia, 86 (2014) 32-35.CrossRef
101.
Zurück zum Zitat X.Y. Fang, D.Q. Yi, J.F. Nie, Metallurgical and Materials Transactions A, 40 (2009) 2761-2771.CrossRef X.Y. Fang, D.Q. Yi, J.F. Nie, Metallurgical and Materials Transactions A, 40 (2009) 2761-2771.CrossRef
103.
Zurück zum Zitat C. Corby, C.H. Cáceres, P. Lukác, Materials Science and Engineering A, 387-389 (2004) 22-24.CrossRef C. Corby, C.H. Cáceres, P. Lukác, Materials Science and Engineering A, 387-389 (2004) 22-24.CrossRef
104.
106.
107.
108.
110.
111.
Zurück zum Zitat P.G. Partridge, Metallurgical Reviews, 12 (1967) 169-194. P.G. Partridge, Metallurgical Reviews, 12 (1967) 169-194.
112.
Zurück zum Zitat R. Brouwer, J. Rector, N. Koeman, R. Griessen, Physical Review B, 40 (1989) 3546.CrossRef R. Brouwer, J. Rector, N. Koeman, R. Griessen, Physical Review B, 40 (1989) 3546.CrossRef
113.
Zurück zum Zitat L. Sturkey: Trans. Met. Soc. AIME, 218, 1960 L. Sturkey: Trans. Met. Soc. AIME, 218, 1960
114.
Zurück zum Zitat J. Mushovic and N. Stoloff: in International Conference on the Strength of Metals and Alloys, Tokyo, 1968, p. 24. J. Mushovic and N. Stoloff: in International Conference on the Strength of Metals and Alloys, Tokyo, 1968, p. 24.
115.
Zurück zum Zitat D. Amberger, P. Eisenlohr, M. Göken, Acta Materialia, 60 (2012) 2277-2289.CrossRef D. Amberger, P. Eisenlohr, M. Göken, Acta Materialia, 60 (2012) 2277-2289.CrossRef
118.
Zurück zum Zitat B. Zhang, A.V. Nagasekhar, T. Sivarupan, C.H. Caceres, Advanced Engineering Materials, 15 (2013) 1059-1067.CrossRef B. Zhang, A.V. Nagasekhar, T. Sivarupan, C.H. Caceres, Advanced Engineering Materials, 15 (2013) 1059-1067.CrossRef
119.
Zurück zum Zitat D. Kuhlmann-Wilsdorf, H.G.F. Wilsdorf, J.A. Wert, Scripta Metallurgica et Materialia, 31 (1994) 729-734.CrossRef D. Kuhlmann-Wilsdorf, H.G.F. Wilsdorf, J.A. Wert, Scripta Metallurgica et Materialia, 31 (1994) 729-734.CrossRef
120.
Zurück zum Zitat D. Hull, D.J. Bacon (1984) Introduction to Dislocations. Pergamon Press: Oxford, p. 214. D. Hull, D.J. Bacon (1984) Introduction to Dislocations. Pergamon Press: Oxford, p. 214.
121.
Zurück zum Zitat A. Seeger, in: J. C. Fisher, W. G. Johnston, R. Thomson, T. Vreeland (Eds.) Dislocations and mechanical properties of crystals, Chapman and Hall, London, 1957, pp. 243-329. A. Seeger, in: J. C. Fisher, W. G. Johnston, R. Thomson, T. Vreeland (Eds.) Dislocations and mechanical properties of crystals, Chapman and Hall, London, 1957, pp. 243-329.
122.
123.
Zurück zum Zitat F.R.N. Nabarro, H.L. de Villiers (1995) The Physics of Creep. Taylor and Francis, London, 1995. F.R.N. Nabarro, H.L. de Villiers (1995) The Physics of Creep. Taylor and Francis, London, 1995.
124.
Zurück zum Zitat H. Suzuki, in: J C Fisher, W G Johnston, R Thomson, T Vreeland (Eds.) Dislocations and mechanical properties of crystals, John Wiley, New York, 1957, pp. 361-390. H. Suzuki, in: J C Fisher, W G Johnston, R Thomson, T Vreeland (Eds.) Dislocations and mechanical properties of crystals, John Wiley, New York, 1957, pp. 361-390.
126.
128.
Zurück zum Zitat Y. Chino, M. Kado, T. Ueda, M. Mabuchi, Metallurgical and Materials Transactions A, 42 (2011) 1965-1973.CrossRef Y. Chino, M. Kado, T. Ueda, M. Mabuchi, Metallurgical and Materials Transactions A, 42 (2011) 1965-1973.CrossRef
129.
Zurück zum Zitat U.F. Kocks, H. Mecking, Progress in Materials Science, 48 (2003) 171-273.CrossRef U.F. Kocks, H. Mecking, Progress in Materials Science, 48 (2003) 171-273.CrossRef
130.
Zurück zum Zitat W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Materials Research Letters, 1 (2013) 61-66.CrossRef W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Materials Research Letters, 1 (2013) 61-66.CrossRef
131.
Zurück zum Zitat Z. Trojanová, P. Lukác, Journal of Materials Processing Technology, 162-163 (2005) 416-421.CrossRef Z. Trojanová, P. Lukác, Journal of Materials Processing Technology, 162-163 (2005) 416-421.CrossRef
134.
Zurück zum Zitat S. Müller, L.W. Wang, A. Zunger, C. Wolverton, Physical Review B, 60 (1999) 16448-16462.CrossRef S. Müller, L.W. Wang, A. Zunger, C. Wolverton, Physical Review B, 60 (1999) 16448-16462.CrossRef
135.
Zurück zum Zitat W. Hume-Rothery, Atomic Theory, Institute of Metals, London, 1946. W. Hume-Rothery, Atomic Theory, Institute of Metals, London, 1946.
136.
Zurück zum Zitat C. Wolverton, V. Ozolin, A. Zunger, Journal of Physics: Condensed Matter, 12 (2000) 2749-2768. C. Wolverton, V. Ozolin, A. Zunger, Journal of Physics: Condensed Matter, 12 (2000) 2749-2768.
137.
139.
Zurück zum Zitat R.F. Zhang, S.H. Sheng, B.X. Liu, Chemical Physics Letters 442 (2007) 511.CrossRef R.F. Zhang, S.H. Sheng, B.X. Liu, Chemical Physics Letters 442 (2007) 511.CrossRef
142.
Zurück zum Zitat D.G. Pettifor: in Solid State Physics, E. Henry and T. David, eds., Academic Press, 1987, pp. 43–92 D.G. Pettifor: in Solid State Physics, E. Henry and T. David, eds., Academic Press, 1987, pp. 43–92
143.
Zurück zum Zitat Y.M. Zhang, J.R.G. Evans, Y. Shoufeng, The Journal of Crystallization Physics and Chemistry, 1 (2010) 103-119. Y.M. Zhang, J.R.G. Evans, Y. Shoufeng, The Journal of Crystallization Physics and Chemistry, 1 (2010) 103-119.
148.
Zurück zum Zitat C. Bettles, M. Gibson, K. Venkatesan, Scripta Materialia, 51 (2004) 193-197.CrossRef C. Bettles, M. Gibson, K. Venkatesan, Scripta Materialia, 51 (2004) 193-197.CrossRef
150.
Zurück zum Zitat C.H. Caceres, and S. Abaspour: in Magnesium Technology, S.N. Mathaudhu N. Hort, N.R. Neelameggham and M. Alderman ed., TMS, Texas, 2013, pp. 225–30. C.H. Caceres, and S. Abaspour: in Magnesium Technology, S.N. Mathaudhu N. Hort, N.R. Neelameggham and M. Alderman ed., TMS, Texas, 2013, pp. 225–30.
152.
Zurück zum Zitat P. Chen, D.-L. Li, J.-X. Yi, L. Wen, B.-Y. Tang, L.-M. Peng, W.-J. Ding, Solid State Sciences, 11 (2009) 2156-2161.CrossRef P. Chen, D.-L. Li, J.-X. Yi, L. Wen, B.-Y. Tang, L.-M. Peng, W.-J. Ding, Solid State Sciences, 11 (2009) 2156-2161.CrossRef
154.
Zurück zum Zitat H. Zhou, W. Xu, W. Jian, G. Cheng, X. Ma, W. Guo, S. Mathaudhu, Q. Wang, and Y. Zhu: Philos. Mag., 2014, p. 1–7. H. Zhou, W. Xu, W. Jian, G. Cheng, X. Ma, W. Guo, S. Mathaudhu, Q. Wang, and Y. Zhu: Philos. Mag., 2014, p. 1–7.
155.
Zurück zum Zitat G.V. Raynor: The Physical Metallurgy of Magnesium and Its Alloys, Pergamon, 1959 G.V. Raynor: The Physical Metallurgy of Magnesium and Its Alloys, Pergamon, 1959
156.
Zurück zum Zitat M.F. Ashby: Materials Selection in Mechanical Design, 4th ed., Butterworth-Heinemann, Amsterdam, chap. 7, 2005. M.F. Ashby: Materials Selection in Mechanical Design, 4th ed., Butterworth-Heinemann, Amsterdam, chap. 7, 2005.
158.
Zurück zum Zitat X. Gu, X. Xie, N. Li, Y. Zheng, L. Qin, Acta Biomaterialia, 8 (2012) 2360-2374.CrossRef X. Gu, X. Xie, N. Li, Y. Zheng, L. Qin, Acta Biomaterialia, 8 (2012) 2360-2374.CrossRef
159.
Zurück zum Zitat B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, M. Easton, Materials Science and Engineering: A, 599 (2014) 204-211.CrossRef B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, M. Easton, Materials Science and Engineering: A, 599 (2014) 204-211.CrossRef
161.
Zurück zum Zitat S. Gavras, S. Zhu, M.A. Gibson, M.A. Easton, and J.-F. Nie: in 9th International Conference on Magnesium alloys and their Applications, K.-U. Kainer, W.J. Poole ed., Vancouver, 2012. S. Gavras, S. Zhu, M.A. Gibson, M.A. Easton, and J.-F. Nie: in 9th International Conference on Magnesium alloys and their Applications, K.-U. Kainer, W.J. Poole ed., Vancouver, 2012.
165.
166.
Metadaten
Titel
Thermodynamics-Based Selection and Design of Creep-Resistant Cast Mg Alloys
verfasst von
Saeideh Abaspour
Carlos H. Cáceres
Publikationsdatum
14.09.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 12/2015
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-3128-5

Weitere Artikel der Ausgabe 12/2015

Metallurgical and Materials Transactions A 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.