Skip to main content
Log in

Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, welding of TZM (molybdenum-based alloy) plates in square-butt configuration was carried out using electron beam and laser-GTAW hybrid power sources. Microstructures of weld joint containing three zones—parent metal, heat-affected zone, and fusion zone—were clearly identified when examined through optical and scanning electron microscopy. The weld joints were found to be sound with very wide fusion and heat-affected zones. The microstructure of the fusion zone was coarse-grained. as-solidified microstructure, while the microstructure of heat-affected zone was the recrystallized microstructure with reduction in grain size as distance from the fusion line increased. Microhardness profile using Vickers hardness tester was obtained across the weld region, and the tensile properties of the weld joints were evaluated by performing room temperature tensile test and fracture was examined using scanning electron microscope. Joint coefficient of the weld joints were ~40 to 45 pct of that of the parent metals with nonmeasurable tensile ductility with predominantly transgranular mode of fracture indicating weakness along the grain boundary. Detailed orientation imaging and transmission electron microscopy were carried out to understand the most dominating factor in introducing weld joint brittleness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. El-Genk Mohamed and Jean-Michel Tournier : J. Nucl. Mater., 2005, vol. 340,pp.93–112.

    Article  Google Scholar 

  2. W.D. Klopp: Space Nuclear Power Systems, M.S. El-Genk and M.D. Hoover, eds., Orbit Book Company, Malabar, FL, 1985, vol. 42, p. 359.

  3. L.D. Lundberg: Los Alamos Scientific Laboratory’s Report No. LA-8685-MS, Los Alamos, NM, January 1981.

  4. V. A. Borisenko: Soviet powder metallurgy and metal ceramics, 1963, vol. 1, no. 3, pp 182.

    Article  Google Scholar 

  5. D.R. Ervin, D.L Bourell, C. Rabenberg, L. Persad : Mater. Sci. Eng. A, 1988, vol. 102, pp. 25-30.

    Article  Google Scholar 

  6. OD Neikov et al. (2009). Handbook of non-ferrous metal powders: technologies and applications. Elsevier, New York, pp. 464–466

    Google Scholar 

  7. J. Fan, M. Lu, H. Cheng, J. Tian, B. Huang: Int. J. Refract. Met. H., 2009, vol. 27, pp. 78-82.

    Article  Google Scholar 

  8. F. Morito, J. Less-Common Metals, 1989, vol.146,pp 337-346.

    Article  Google Scholar 

  9. F. Morito, J of Nucl. Mater., 1994, vol.212-215 pp. 1608-1612.

    Article  Google Scholar 

  10. T Mrotzek, A Hoffmann, U Martin: Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 298-305.

    Article  Google Scholar 

  11. B.V. Cockeram: Mater. Sci. & Engg. A, 2006, vol. 418, pp.120–136.

    Article  Google Scholar 

  12. I. G. Sharma, S. P. Chakraborty, A. K. Suri: J. Alloy Comp., 2005, vol.393, pp.122–127.

    Article  Google Scholar 

  13. R. W. Burman: JOM, 1977, vol 29, pp.12-17

    Article  Google Scholar 

  14. M.H Scott, P.M Knowlson: J. Less Common Met., 1963, vol. 5, pp. 205-244.

    Article  Google Scholar 

  15. K.-S. Wang et al: Mater. Sci Eng. A, 2015, vol.636, pp. 415-420.

    Article  Google Scholar 

  16. R.L Kesterson: Hydrogen embrittlement testing, ASTM STP 543, ASTM 1974, pp. 254–63

  17. H. Kurishita, Y. Kitsunai, T. Shibayama, H. Kayano, Y. Hiraoka : J. Nucl. Mater, 1996, vol. 233-237, pp. 557-564

    Article  Google Scholar 

  18. J. Wadsworth, G. R. Morse and P. M. Chewey: Mater. Sci. Eng., 1983, vol. 59, pp. 257-273.

    Article  Google Scholar 

  19. J Warren: Int. J. Refract. Met. H., 1998, vol. 16, pp 149-157.

    Article  Google Scholar 

  20. M.K Miller, E.A Kenika, M.S. Mousa, 1, K.F Russell, A.J Bryhan : Scripta Mater, 2002, vol.46,pp.299–303

    Article  Google Scholar 

  21. M P Seah: J. Phys. F: Met. Phys. 1980,vol.10,pp.1043-64.

    Article  Google Scholar 

  22. F L Carr, M Goldman, L D Jaffe and D C. Buffum : Trans. AIME. 1953, vol.197, pp. 998

    Google Scholar 

  23. B. V. Cockeram: Metall. Trans., 2002, vol. 33A, pp. 3685-707

    Article  Google Scholar 

  24. G. Neumann and C. Tuijn: Self diffusion and impurity diffusion in pure metals: handbook of experimental data. Pregaman Metals Series, vol. 14. Elsevier, Oxford, U.K.

  25. C. Thiel,, R. Weber, J. Johannsen, T. Graf : Physics Procedia, 2013, vol. 41,pp. 209–215;

    Article  Google Scholar 

  26. Z. Sun, R. Karppi: J. of Mater Process Tech., 1966, vol. 59, pp. 257-267.

    Article  Google Scholar 

  27. R. H. Lamoreaux: Bull. Alloy Phase Diag, 1980,vol. 1, pp. 85-89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghvendra Tewari.

Additional information

Manuscript submitted April 22, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, A., Kumar, S., Tewari, R. et al. Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques. Metall Mater Trans A 47, 1143–1152 (2016). https://doi.org/10.1007/s11661-015-3267-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3267-8

Keywords

Navigation