Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2018

06.03.2018

A New Cellular Automaton Method Coupled with a Rate-dependent (CARD) Model for Predicting Dynamic Recrystallization Behavior

verfasst von: M. Azarbarmas, M. Aghaie-Khafri

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A comprehensive cellular automaton (CA) model should be coupled with a rate-dependent (RD) model for analyzing the RD deformation of alloys at high temperatures. In the present study, a new CA technique coupled with an RD model—namely, CARD—was developed. The proposed CARD model was used to simulate the dynamic recrystallization phenomenon during the hot deformation of the Inconel 718 superalloy. This model is capable of calculating the mean grain size and volume fraction of dynamic recrystallized grains, and estimating the phenomenological flow behavior of the material. In the presented model, an actual orientation definition comprising three Euler angles was used by implementing the electron backscatter diffraction data. For calculating the lattice rotation of grains, it was assumed that all slip systems of grains are active during the high-temperature deformation because of the intrinsic rate dependency of the procedure. Moreover, the morphological changes in grains were obtained using a topological module.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
As the accurate value of Mm is rarely available, it is often determined by regression.[35]
 
2
The probability at the triple junctions was defined as being 1.5 times greater than that at the sites located between two original grains. This value was obtained by trial and error.
 
3
It is clear that any stretch tensor results from shear strains in the slip systems of grains. It should be noted that macroscopic shearing is different from the shearing strains occurring in the slip systems of grains.
 
4
If the forward and reverse slips are not considered to be different, it should be assumed to be 12 slip systems.
 
5
Regarding the plotting in Figure 9(b), in some specified condition of temperature, strain rate and strain, the predicted DRX fraction values were plotted as a function of the experimentally measured DRX fraction values. It is clear that in the case of a completely accurate prediction, the plotted points should be exactly on the bisecting line of the first coordinate quarter, which is shown as a blue line in Figure 9(b).
 
6
Normal grain boundaries or boundaries between two neighboring grains.
 
Literatur
1.
Zurück zum Zitat 1. H. Y. Zhang, S. H. Zhang, Z. X. Li, and M. Cheng: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, vol. 224, pp. 103–10.CrossRef 1. H. Y. Zhang, S. H. Zhang, Z. X. Li, and M. Cheng: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, vol. 224, pp. 103–10.CrossRef
2.
Zurück zum Zitat 2. M. Aghaie-Khari, N. Golarzi: J. Mater. Sci. 2008, vol. 43, pp. 3717–24.CrossRef 2. M. Aghaie-Khari, N. Golarzi: J. Mater. Sci. 2008, vol. 43, pp. 3717–24.CrossRef
3.
Zurück zum Zitat 3. M. A. Steiner, R. J. McCabe, E. Garlea, and S. R. Agnew: J. Nucl. Mater. 2017, vol. 492, pp. 74–87.CrossRef 3. M. A. Steiner, R. J. McCabe, E. Garlea, and S. R. Agnew: J. Nucl. Mater. 2017, vol. 492, pp. 74–87.CrossRef
4.
Zurück zum Zitat M. Taheri, M.R. Abutalebi, H. Seyedeyn, and B. Mohammadsadeghi: J. Metall. Mater. Eng. 2017, vol. 28, pp. 37–50. M. Taheri, M.R. Abutalebi, H. Seyedeyn, and B. Mohammadsadeghi: J. Metall. Mater. Eng. 2017, vol. 28, pp. 37–50.
5.
Zurück zum Zitat 5. K. Adam, J. M. Root, Z. Long, and D. P. Field: J. Mater. Eng. Perform. 2017, vol. 26, pp. 207–13.CrossRef 5. K. Adam, J. M. Root, Z. Long, and D. P. Field: J. Mater. Eng. Perform. 2017, vol. 26, pp. 207–13.CrossRef
6.
Zurück zum Zitat 6. K. Piękoś, J. Tarasiuk, K. Wierzbanowski, and B. Bacroix: Comput. Mater. Sci. 2008, vol. 42, pp. 584–94.CrossRef 6. K. Piękoś, J. Tarasiuk, K. Wierzbanowski, and B. Bacroix: Comput. Mater. Sci. 2008, vol. 42, pp. 584–94.CrossRef
7.
Zurück zum Zitat Y. Mellbin, H. Hallberg, and M. Ristinmaa: 9th Eur. Solid Mech. Conf. 2015. Y. Mellbin, H. Hallberg, and M. Ristinmaa: 9th Eur. Solid Mech. Conf. 2015.
8.
Zurück zum Zitat 8. A. Vondrous, P. Bienger, S. Schreijäg, M. Selzer, D. Schneider, B. Nestler, D. Helm, and R. Mönig: Comput. Mech. 2015, vol. 55, pp. 439–52.CrossRef 8. A. Vondrous, P. Bienger, S. Schreijäg, M. Selzer, D. Schneider, B. Nestler, D. Helm, and R. Mönig: Comput. Mech. 2015, vol. 55, pp. 439–52.CrossRef
9.
Zurück zum Zitat 9. T. Takaki and Y. Tomita: Int. J. Mech. Sci. 2010, vol. 52, pp. 320–8.CrossRef 9. T. Takaki and Y. Tomita: Int. J. Mech. Sci. 2010, vol. 52, pp. 320–8.CrossRef
10.
Zurück zum Zitat 10. S. P. Chen and S. Van der Zwaag: Metall. Mater. Trans. A 2004, vol. 35, pp. 741–9.CrossRef 10. S. P. Chen and S. Van der Zwaag: Metall. Mater. Trans. A 2004, vol. 35, pp. 741–9.CrossRef
11.
Zurück zum Zitat 11. S. P. Chen and S. Van der Zwaag: Metall. Mater. Trans. A 2006, vol. 37, pp. 2859–69.CrossRef 11. S. P. Chen and S. Van der Zwaag: Metall. Mater. Trans. A 2006, vol. 37, pp. 2859–69.CrossRef
12.
Zurück zum Zitat 12. H. W. Lee and Y.-T. Im: Mater. Trans. 2010, vol. 51, pp. 1614–20.CrossRef 12. H. W. Lee and Y.-T. Im: Mater. Trans. 2010, vol. 51, pp. 1614–20.CrossRef
13.
Zurück zum Zitat 13. H. W. Lee and Y.-T. Im: Int. J. Mech. Sci. 2010, vol. 52, pp. 1277–89.CrossRef 13. H. W. Lee and Y.-T. Im: Int. J. Mech. Sci. 2010, vol. 52, pp. 1277–89.CrossRef
14.
Zurück zum Zitat 14. P. Asadi, M. K. B. Givi, and M. Akbari: Int. J. Adv. Manuf. Technol. 2016, vol. 83, pp. 301–11.CrossRef 14. P. Asadi, M. K. B. Givi, and M. Akbari: Int. J. Adv. Manuf. Technol. 2016, vol. 83, pp. 301–11.CrossRef
15.
Zurück zum Zitat 15. F. Ohi and Y. Takamatsu: Jpn. J. Ind. Appl. Math. 2001, vol. 18, 59.CrossRef 15. F. Ohi and Y. Takamatsu: Jpn. J. Ind. Appl. Math. 2001, vol. 18, 59.CrossRef
16.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena: Elsevier, New York, 2nd edition, 2004. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena: Elsevier, New York, 2nd edition, 2004.
17.
Zurück zum Zitat W. 1 Kurz, B. Giovanola, and R. Trivedi: Acta Metall. 1986, vol. 34, pp. 823–30.CrossRef W. 1 Kurz, B. Giovanola, and R. Trivedi: Acta Metall. 1986, vol. 34, pp. 823–30.CrossRef
18.
Zurück zum Zitat 18. Y. C. Lin, Y.-X. Liu, M.-S. Chen, M.-H. Huang, X. Ma, and Z.-L. Long: Mater. Des. 2016, vol. 99, pp. 107–14.CrossRef 18. Y. C. Lin, Y.-X. Liu, M.-S. Chen, M.-H. Huang, X. Ma, and Z.-L. Long: Mater. Des. 2016, vol. 99, pp. 107–14.CrossRef
19.
Zurück zum Zitat 19. F. Han, B. Tang, H. Kou, J. Li, and Y. Feng: J. Mater. Sci. 2013, vol. 48, pp. 7142–52.CrossRef 19. F. Han, B. Tang, H. Kou, J. Li, and Y. Feng: J. Mater. Sci. 2013, vol. 48, pp. 7142–52.CrossRef
20.
Zurück zum Zitat 20. L. Sieradzki and L. Madej: Comput. Mater. Sci. 2013, vol. 67, pp. 156–73.CrossRef 20. L. Sieradzki and L. Madej: Comput. Mater. Sci. 2013, vol. 67, pp. 156–73.CrossRef
21.
Zurück zum Zitat 21. F. Han, B. Tang, H. Kou, L. Cheng, J. Li, and Y. Feng: J. Mater. Sci. 2014, vol. 49, pp. 3253–67.CrossRef 21. F. Han, B. Tang, H. Kou, L. Cheng, J. Li, and Y. Feng: J. Mater. Sci. 2014, vol. 49, pp. 3253–67.CrossRef
22.
Zurück zum Zitat 22. M. Kühbach, G. Gottstein, and L. A. Barrales-Mora: Acta Mater. 2016, vol. 107, pp. 366–76.CrossRef 22. M. Kühbach, G. Gottstein, and L. A. Barrales-Mora: Acta Mater. 2016, vol. 107, pp. 366–76.CrossRef
23.
24.
Zurück zum Zitat 24. T. Zhang, S. Lu, Y. Wu, and G. Hai: Trans. Nonferrous Met. Soc. China 2017, vol. 27, pp. 1327–37.CrossRef 24. T. Zhang, S. Lu, Y. Wu, and G. Hai: Trans. Nonferrous Met. Soc. China 2017, vol. 27, pp. 1327–37.CrossRef
25.
Zurück zum Zitat M. Azarbarmas and M. Aghaie-Khafri: Model. Simul. Mater. Sci. Eng. 2017, vol. 25, pp. 1–24.CrossRef M. Azarbarmas and M. Aghaie-Khafri: Model. Simul. Mater. Sci. Eng. 2017, vol. 25, pp. 1–24.CrossRef
26.
Zurück zum Zitat 26. M. Sitko, M. Pietrzyk, and L. Madej: J. Comput. Sci. 2016, vol. 16, pp. 98–113.CrossRef 26. M. Sitko, M. Pietrzyk, and L. Madej: J. Comput. Sci. 2016, vol. 16, pp. 98–113.CrossRef
27.
Zurück zum Zitat 27. Z.-Y. Jin, L. Juan, Z.-S. Cui, and D.-L. Wei: Trans. Nonferrous Met. Soc. China 2010, vol. 20, pp. 458–64.CrossRef 27. Z.-Y. Jin, L. Juan, Z.-S. Cui, and D.-L. Wei: Trans. Nonferrous Met. Soc. China 2010, vol. 20, pp. 458–64.CrossRef
28.
Zurück zum Zitat 28. J. Li, Z. Xie, S. Li, and Y. Zang: J. Cent. South Univ. 2016, vol. 23, pp. 497–507.CrossRef 28. J. Li, Z. Xie, S. Li, and Y. Zang: J. Cent. South Univ. 2016, vol. 23, pp. 497–507.CrossRef
29.
Zurück zum Zitat 29. H.P. Ji, L.G. Zhang, J. Liu, and T.Y. Wang: Key Eng. Mater. 2016, vol. 693, pp. 548–53.CrossRef 29. H.P. Ji, L.G. Zhang, J. Liu, and T.Y. Wang: Key Eng. Mater. 2016, vol. 693, pp. 548–53.CrossRef
30.
Zurück zum Zitat 30. N. Xiao, C. Zheng, D. Li, and Y. Li: Comput. Mater. Sci. 2008, vol. 41, pp. 366–74.CrossRef 30. N. Xiao, C. Zheng, D. Li, and Y. Li: Comput. Mater. Sci. 2008, vol. 41, pp. 366–74.CrossRef
31.
Zurück zum Zitat 31. D. Raabe and R. C. Becker: Model. Simul. Mater. Sci. Eng. 2000, vol. 8, 445.CrossRef 31. D. Raabe and R. C. Becker: Model. Simul. Mater. Sci. Eng. 2000, vol. 8, 445.CrossRef
32.
Zurück zum Zitat 32. H. Li, X. Sun, and H. Yang: Int. J. Plast. 2016, vol. 87, pp. 154–80.CrossRef 32. H. Li, X. Sun, and H. Yang: Int. J. Plast. 2016, vol. 87, pp. 154–80.CrossRef
33.
Zurück zum Zitat 33. J. De Jaeger, D. Solas, O. Fandeur, J.-H. Schmitt, and C. Rey: Mater. Sci. Eng. A 2015, vol. 646, pp. 33–44.CrossRef 33. J. De Jaeger, D. Solas, O. Fandeur, J.-H. Schmitt, and C. Rey: Mater. Sci. Eng. A 2015, vol. 646, pp. 33–44.CrossRef
34.
Zurück zum Zitat 34. S. Shabaniverki and S. Serajzadeh: Appl. Math. Model. 2016, vol. 40, pp. 7571–82.CrossRef 34. S. Shabaniverki and S. Serajzadeh: Appl. Math. Model. 2016, vol. 40, pp. 7571–82.CrossRef
35.
Zurück zum Zitat 35. Y.-X. Liu, Y. C. Lin, H.-B. Li, D.-X. Wen, X.-M. Chen, and M.-S. Chen: Mater. Sci. Eng. A 2015, vol. 626, pp. 432–40.CrossRef 35. Y.-X. Liu, Y. C. Lin, H.-B. Li, D.-X. Wen, X.-M. Chen, and M.-S. Chen: Mater. Sci. Eng. A 2015, vol. 626, pp. 432–40.CrossRef
36.
Zurück zum Zitat 36. L. Cheng, X. Xue, B. Tang, D. Liu, J. Li, H. Kou, and J. Li: Mater. Sci. Eng. A 2014, vol. 606, pp. 24–30.CrossRef 36. L. Cheng, X. Xue, B. Tang, D. Liu, J. Li, H. Kou, and J. Li: Mater. Sci. Eng. A 2014, vol. 606, pp. 24–30.CrossRef
37.
Zurück zum Zitat 37. Y. Zhang, S. Huili, A. A. Volinsky, B. Tian, Z. Chai, P. Liu, and Y. Liu: J. Mater. Eng. Perform. 2016, vol. 25, pp. 1150–6.CrossRef 37. Y. Zhang, S. Huili, A. A. Volinsky, B. Tian, Z. Chai, P. Liu, and Y. Liu: J. Mater. Eng. Perform. 2016, vol. 25, pp. 1150–6.CrossRef
38.
Zurück zum Zitat 38. G. Taylor: J. Inst. Met. 1938, vol. 62, pp. 307–24. 38. G. Taylor: J. Inst. Met. 1938, vol. 62, pp. 307–24.
39.
Zurück zum Zitat 39. H. Mecking and U. F. Kocks: Acta Metall. 1981, vol. 29, pp. 1865–75.CrossRef 39. H. Mecking and U. F. Kocks: Acta Metall. 1981, vol. 29, pp. 1865–75.CrossRef
40.
Zurück zum Zitat 40. Y. Zhang, S. Jiang, Y. Liang, and L. Hu: Comput. Mater. Sci. 2013, vol. 71, pp. 124–34.CrossRef 40. Y. Zhang, S. Jiang, Y. Liang, and L. Hu: Comput. Mater. Sci. 2013, vol. 71, pp. 124–34.CrossRef
41.
Zurück zum Zitat 41. L. I. U. Xiao, L. Li, F. He, Z. Jia, B. Zhu, and L. Zhang: Trans. Nonferrous Met. Soc. China 2013, vol. 23, pp. 2692–9.CrossRef 41. L. I. U. Xiao, L. Li, F. He, Z. Jia, B. Zhu, and L. Zhang: Trans. Nonferrous Met. Soc. China 2013, vol. 23, pp. 2692–9.CrossRef
42.
Zurück zum Zitat 42. H. W. Lee, S.-H. Kang, and Y. Lee: Int. J. Precis. Eng. Manuf. 2014, vol. 15, pp. 1055–62.CrossRef 42. H. W. Lee, S.-H. Kang, and Y. Lee: Int. J. Precis. Eng. Manuf. 2014, vol. 15, pp. 1055–62.CrossRef
43.
Zurück zum Zitat 43. H. Hallberg, M. Wallin, and M. Ristinmaa: Comput. Mater. Sci. 2010, vol. 49, pp. 25–34.CrossRef 43. H. Hallberg, M. Wallin, and M. Ristinmaa: Comput. Mater. Sci. 2010, vol. 49, pp. 25–34.CrossRef
44.
45.
Zurück zum Zitat 45. C. Haase, M. Kühbach, L. A. Barrales-Mora, S. L. Wong, F. Roters, D. A. Molodov, and G. Gottstein: Acta Mater. 2015, vol. 100, pp. 155–68.CrossRef 45. C. Haase, M. Kühbach, L. A. Barrales-Mora, S. L. Wong, F. Roters, D. A. Molodov, and G. Gottstein: Acta Mater. 2015, vol. 100, pp. 155–68.CrossRef
46.
Zurück zum Zitat 46. F. Chen, K. Qi, Z. Cui, and X. Lai: Comput. Mater. Sci. 2014, vol. 83, pp. 331–40.CrossRef 46. F. Chen, K. Qi, Z. Cui, and X. Lai: Comput. Mater. Sci. 2014, vol. 83, pp. 331–40.CrossRef
47.
Zurück zum Zitat 47. H. Yang, C. Wu, H. Li, and X. Fan: Sci. China Technol. Sci. 2011, vol. 54, pp. 2107–18.CrossRef 47. H. Yang, C. Wu, H. Li, and X. Fan: Sci. China Technol. Sci. 2011, vol. 54, pp. 2107–18.CrossRef
48.
Zurück zum Zitat 48. Z. Li, Q. Xu, and B. Liu: Comput. Mater. Sci. 2015, vol. 107, pp. 122–33.CrossRef 48. Z. Li, Q. Xu, and B. Liu: Comput. Mater. Sci. 2015, vol. 107, pp. 122–33.CrossRef
50.
Zurück zum Zitat X. Ma, C.-W. Zheng, X.-G. Zhang, and D.-Z. Li: Acta Metall. Sin. (Engl. Lett.) 2016, vol. 29, pp. 1127–35.CrossRef X. Ma, C.-W. Zheng, X.-G. Zhang, and D.-Z. Li: Acta Metall. Sin. (Engl. Lett.) 2016, vol. 29, pp. 1127–35.CrossRef
51.
Zurück zum Zitat 51. F. Chen, Z. Cui, J. Liu, W. Chen, and S. Chen: Mater. Sci. Eng. A 2010, vol. 527, pp. 5539–49.CrossRef 51. F. Chen, Z. Cui, J. Liu, W. Chen, and S. Chen: Mater. Sci. Eng. A 2010, vol. 527, pp. 5539–49.CrossRef
53.
Zurück zum Zitat 53. L. Duchene, T. Lelotte, P. Flores, S. Bouvier, and A.-M. Habraken: Int. J. Plast. 2008, vol. 24, pp. 397–427.CrossRef 53. L. Duchene, T. Lelotte, P. Flores, S. Bouvier, and A.-M. Habraken: Int. J. Plast. 2008, vol. 24, pp. 397–427.CrossRef
54.
Zurück zum Zitat A. S. Khan and S. Huang, Continuum Theory of Plasticity: John Wiley & Sons, 1995. A. S. Khan and S. Huang, Continuum Theory of Plasticity: John Wiley & Sons, 1995.
55.
Zurück zum Zitat S. Ahmadi, A New Eulerian-Based Double Continuity Model for Predicting the Evolution of Pair Correlation Statistics under Large Plastic Deformations: Brigham Young University-Provo, 2010. S. Ahmadi, A New Eulerian-Based Double Continuity Model for Predicting the Evolution of Pair Correlation Statistics under Large Plastic Deformations: Brigham Young University-Provo, 2010.
56.
Zurück zum Zitat 56. S. Ghosh, P. Gabane, A. Bose, and N. Chakraborti: Comput. Mater. Sci. 2009, vol. 45, pp. 96–103.CrossRef 56. S. Ghosh, P. Gabane, A. Bose, and N. Chakraborti: Comput. Mater. Sci. 2009, vol. 45, pp. 96–103.CrossRef
57.
Zurück zum Zitat 57. H. W. Hesselbarth and I. R. Göbel: Acta Metall. Mater. 1991, vol. 39, pp. 2135–43.CrossRef 57. H. W. Hesselbarth and I. R. Göbel: Acta Metall. Mater. 1991, vol. 39, pp. 2135–43.CrossRef
58.
Zurück zum Zitat 58. M. Azarbarmas, M. Aghaie-Khafri, J. M. Cabrera, and J. Calvo: Mater. Des. 2016, vol. 94, pp. 28–38.CrossRef 58. M. Azarbarmas, M. Aghaie-Khafri, J. M. Cabrera, and J. Calvo: Mater. Des. 2016, vol. 94, pp. 28–38.CrossRef
59.
Zurück zum Zitat 59. M. Azarbarmas, M. Aghaie-Khafri, J. M. Cabrera, and J. Calvo: Mater. Sci. Eng. A 2016, vol. 678, pp. 137–52.CrossRef 59. M. Azarbarmas, M. Aghaie-Khafri, J. M. Cabrera, and J. Calvo: Mater. Sci. Eng. A 2016, vol. 678, pp. 137–52.CrossRef
60.
Zurück zum Zitat 60. L. Huang, F. Qi, P. Hua, L. Yu, F. Liu, W. Sun, and Z. Hu: Metall. Mater. Trans. A 2015, vol. 46, 4276.CrossRef 60. L. Huang, F. Qi, P. Hua, L. Yu, F. Liu, W. Sun, and Z. Hu: Metall. Mater. Trans. A 2015, vol. 46, 4276.CrossRef
61.
Zurück zum Zitat 61. Y. Wang, W. Z. Shao, L. Zhen, and X. M. Zhang: Mater. Sci. Eng. A 2008, vol. 486, pp. 321–32.CrossRef 61. Y. Wang, W. Z. Shao, L. Zhen, and X. M. Zhang: Mater. Sci. Eng. A 2008, vol. 486, pp. 321–32.CrossRef
62.
Zurück zum Zitat 62. H. Beladi, P. Cizek, and P. D. Hodgson: Acta Mater. 2011, vol. 59, pp. 1482–92.CrossRef 62. H. Beladi, P. Cizek, and P. D. Hodgson: Acta Mater. 2011, vol. 59, pp. 1482–92.CrossRef
63.
Zurück zum Zitat 63. Y. G. Liu, M. Q. Li, and J. Luo: Mater. Sci. Eng. A 2013, vol. 574, pp. 1–8.CrossRef 63. Y. G. Liu, M. Q. Li, and J. Luo: Mater. Sci. Eng. A 2013, vol. 574, pp. 1–8.CrossRef
64.
Zurück zum Zitat T. Yu, N. Hansen, and X. Huang: Proc. R. Soc. London A Math. Phys. Eng. Sci. (The Royal Society), 2011, pp. 3039–65.CrossRef T. Yu, N. Hansen, and X. Huang: Proc. R. Soc. London A Math. Phys. Eng. Sci. (The Royal Society), 2011, pp. 3039–65.CrossRef
65.
Zurück zum Zitat 65. P. R. Rios, F. Siciliano Jr., H. R. Z. Sandim, R. L. Plaut, and A. F. Padilha: Mater. Res. 2005, vol. 8, pp. 225–38.CrossRef 65. P. R. Rios, F. Siciliano Jr., H. R. Z. Sandim, R. L. Plaut, and A. F. Padilha: Mater. Res. 2005, vol. 8, pp. 225–38.CrossRef
66.
Zurück zum Zitat 66. M. S. Salehi and S. Serajzadeh: Comput. Mater. Sci. 2013, vol. 69, pp. 53–61.CrossRef 66. M. S. Salehi and S. Serajzadeh: Comput. Mater. Sci. 2013, vol. 69, pp. 53–61.CrossRef
67.
Zurück zum Zitat 67. V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping: CRC Press, 2000. 67. V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping: CRC Press, 2000.
Metadaten
Titel
A New Cellular Automaton Method Coupled with a Rate-dependent (CARD) Model for Predicting Dynamic Recrystallization Behavior
verfasst von
M. Azarbarmas
M. Aghaie-Khafri
Publikationsdatum
06.03.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2018
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4533-3

Weitere Artikel der Ausgabe 5/2018

Metallurgical and Materials Transactions A 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.