Skip to main content

Advertisement

Log in

Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A set of advanced single crystalline γ′ strengthened Co-base superalloys with at least nine alloying elements (Co, Ni, Al, W, Ti, Ta, Cr, Si, Hf, Re) has been developed and investigated. The objective was to generate multinary Co-base superalloys with significantly improved properties compared to the original Co-Al-W-based alloys. All alloys show the typical γ/γ′ two-phase microstructure. A γ′ solvus temperature up to 1174 °C and γ′ volume fractions between 40 and 60 pct at 1050 °C could be achieved, which is significantly higher compared to most other Co-Al-W-based superalloys. However, higher contents of Ti, Ta, and the addition of Re decrease the long-term stability. Atom probe tomography revealed that Re does not partition to the γ phase as strongly as in Ni-base superalloys. Compression creep properties were investigated at 1050 °C and 125 MPa in 〈001〉 direction. The creep resistance is close to that of first generation Ni-base superalloys. The creep mechanisms of the Re-containing alloy was further investigated and it was found that the deformation is located preferentially in the γ channels although some precipitates are sheared during early stages of creep. The addition of Re did not improve the mechanical properties and is therefore not considered as a crucial element in the design of future Co-base superalloys for high temperature applications. Thermodynamic calculations describe well how the alloying elements influence the transformation temperatures although there is still an offset in the actual values. Furthermore, a full set of elastic constants of one of the multinary alloys is presented, showing increased elastic stiffness leading to a higher Young’s modulus for the investigated alloy, compared to conventional Ni-base superalloys. The oxidation resistance is significantly improved compared to the ternary Co-Al-W compound. A complete thermal barrier coating system was applied successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Scr. Mater., 2010, vol. 63, pp. 1197–200.

    Article  Google Scholar 

  2. T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki: JOM, 2010, vol. 62, pp. 58–63.

    Article  Google Scholar 

  3. J. Koßmann, C.H. Zenk, I. Lopez-Galilea, S. Neumeier, A. Kostka, S. Huth, W. Theisen, M. Göken, R. Drautz, and T. Hammerschmidt: J. Mater. Sci., 2015, vol. 50, pp. 6329–38.

    Article  Google Scholar 

  4. K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, and H. Inui: Philos. Mag., 2012, vol. 92, pp. 4011–27.

    Article  Google Scholar 

  5. A. Suzuki: Acta Mater., 2008, vol. 56, pp. 1288–97.

    Article  Google Scholar 

  6. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Mater. Trans., 2008, vol. 49, pp. 1474–1479.

    Article  Google Scholar 

  7. T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, and K. Ishida: Intermetallics, 2013, vol. 32, pp. 274–83.

    Article  Google Scholar 

  8. S. Kobayashi, Y. Tsukamoto, and T. Takasugi: Intermetallics, 2012, vol. 31, pp. 94–8.

    Article  Google Scholar 

  9. S.K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin, A.K. Singh, R. Banerjee, and K. Chattopadhyay: Acta Mater., 2015, vol. 97, pp. 29–40.

    Article  Google Scholar 

  10. E.A. Lass, D.J. Sauza, D.C. Dunand, and D.N. Seidman: Acta Mater., 2018, vol. 147, pp. 284–95.

    Article  Google Scholar 

  11. C.H. Zenk, S. Neumeier, H.J. Stone, and M. Göken: Intermetallics, 2014, vol. 55, pp. 28–39.

    Article  Google Scholar 

  12. I. Povstugar, P.-P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, and D. Raabe: Acta Mater., 2014, vol. 78, pp. 78–85.

    Article  Google Scholar 

  13. A. Suzuki, G.C. DeNolf, and T.M. Pollock: Scr. Mater., 2007, vol. 56, pp. 385–8.

    Article  Google Scholar 

  14. S. Neumeier, L.P. Freund, and M. Göken: Scr. Mater., 2015, vol. 109, pp. 104–7.

    Article  Google Scholar 

  15. E.A. Lass: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2443–59.

    Article  Google Scholar 

  16. M.S. Titus, A. Suzuki, and T.M. Pollock: Scr. Mater., 2012, vol. 66, pp. 574–7.

    Article  Google Scholar 

  17. Thermo-Calc Software, Database TCNI8, Version 2017a, 2017.

  18. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–9.

    Article  Google Scholar 

  19. H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics: The CALPHAD Method. Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  20. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  21. C.H. Zenk, S. Neumeier, M. Kolb, N. Volz, S.G. Fries, O. Dolotko, I. Povstugar, D. Raabe, and M. Göken: in Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys.

  22. J. Sato: Science, 2006, vol. 312, pp. 90–1.

    Article  Google Scholar 

  23. I. Povstugar, C.H. Zenk, R. Li, P.-P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken, and D. Raabe: Mater. Sci. Technol., 2016, vol. 32, pp. 220–5.

    Article  Google Scholar 

  24. H. Chinen, J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Scr. Mater., 2007, vol. 56, pp. 141–3.

    Article  Google Scholar 

  25. C.H. Zenk, A. Bauer, P. Goik, S. Neumeier, H.J. Stone, and M. Göken: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2141–9.

    Article  Google Scholar 

  26. F. Pyczak, B. Devrient, and H. Mughrabi: Superalloys 2004, 2004, pp. 827–836.

    Google Scholar 

  27. C.M. Rae and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 4113–4125.

    Article  Google Scholar 

  28. S. Tin and T.M. Pollock: Mater. Sci. Eng. A, 2003, vol. 348, pp. 111–121.

    Article  Google Scholar 

  29. T.M. Pollock: Mater. Sci. Eng. B, 1995, vol. 32, pp. 255–266.

    Article  Google Scholar 

  30. M. Pröbstle, S. Neumeier, P. Feldner, R. Rettig, H.E. Helmer, R.F. Singer, and M. Göken: Mater. Sci. Eng. A, 2016, vol. 676, pp. 411–20.

    Article  Google Scholar 

  31. P.J. Bocchini, E.A. Lass, K.-W. Moon, M.E. Williams, C.E. Campbell, U.R. Kattner, D.C. Dunand, and D.N. Seidman: Scr. Mater., 2013, vol. 68, pp. 563–6.

    Article  Google Scholar 

  32. S. Meher, H.-Y. Yan, S. Nag, D. Dye, and R. Banerjee: Scr. Mater., 2012, vol. 67, pp. 850–3.

    Article  Google Scholar 

  33. C.C. Jia, K. Ishida, and T. Nishizawa: Metall. Mater. Trans. A, 1994, vol. 25, pp. 473–485.

    Article  Google Scholar 

  34. M. Kolb, C.H. Zenk, A. Kirzinger, I. Povstugar, D. Raabe, S. Neumeier, and M. Göken: J. Mater. Res., 2017, vol. 32, pp. 2551–9.

    Article  Google Scholar 

  35. L.J. Carroll, Q. Feng, J.F. Mansfield, and T.M. Pollock: Mater. Sci. Eng. A, 2007, vol. 457, pp. 292–9.

    Article  Google Scholar 

  36. H. Murakami, T. Honma, Y. Koizumi, and H. Harada: Superalloys 2000, 2000, pp. 747–756.

    Google Scholar 

  37. R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, and M.K. Miller: Scr. Mater., 2004, vol. 51, pp. 327–31.

    Article  Google Scholar 

  38. B. Roebuck, D. Cox, and R. Reed: Scr. Mater., 2001, vol. 44, pp. 917–921.

    Article  Google Scholar 

  39. E.H. Van Der Molen, J.M. Oblak, and O.H. Kriege: Metall. Mater. Trans. B, 1971, vol. 2, pp. 1627–1633.

    Google Scholar 

  40. H.M. Tawancy, N.M. Abbas, A.I. Al-Mana, and T.N. Rhys-Jones: J. Mater. Sci., 1994, vol. 29, pp. 2445–2458.

    Article  Google Scholar 

  41. K. Demtröder, G. Eggeler, and J. Schreuer: Mater. Werkst., 2015, vol. 46, pp. 563–76.

    Article  Google Scholar 

  42. R.W. Jackson, M.S. Titus, M.R. Begley, and T.M. Pollock: Surf. Coat. Technol., 2016, vol. 289, pp. 61–8.

    Article  Google Scholar 

  43. Q. Yao, S.-L. Shang, K. Wang, F. Liu, Y. Wang, Q. Wang, T. Lu, and Z.-K. Liu: J. Mater. Res., 2017, vol. 32, pp. 2100–8.

    Article  Google Scholar 

  44. M.S.A. Karunaratne, S. Kyaw, A. Jones, R. Morrell, and R.C. Thomson: J. Mater. Sci., 2016, vol. 51, pp. 4213–26.

    Article  Google Scholar 

  45. P.K. Sung and D.R. Poirier: Mater. Sci. Eng. A, 1998, vol. 245, pp. 135–141.

    Article  Google Scholar 

  46. H. Morrow, D.L. Sponseller, and M. Semchyshen: Metall. Trans. A, 1975, vol. 6, p. 477.

    Article  Google Scholar 

  47. D. Siebörger, H. Knake, and U. Glatzel: Mater. Sci. Eng. A, 2001, vol. 298, pp. 26–33.

    Article  Google Scholar 

  48. X. Zhang, P.R. Stoddart, J.D. Comins, and A.G. Every: J. Phys. Condens. Matter, 2001, vol. 13, p. 2281.

    Article  Google Scholar 

  49. L.P. Freund, S. Giese, D. Schwimmer, H.W. Höppel, S. Neumeier, and M. Göken: J. Mater. Res., 2017, vol. 32, pp. 4475–82.

    Article  Google Scholar 

  50. K. Tanaka, T. Ohashi, K. Kishida, and H. Inui: Appl. Phys. Lett., 2007, vol. 91, p. 181907.

    Article  Google Scholar 

  51. L. Klein, Y. Shen, M.S. Killian, and S. Virtanen: Corros. Sci., 2011, vol. 53, pp. 2713–20.

    Article  Google Scholar 

  52. F.H. Stott, G.C. Wood, and J. Stringer: Oxid. Met., 1995, vol. 44, pp. 113–45.

    Article  Google Scholar 

  53. L. Klein, M.S. Killian, and S. Virtanen: Corros. Sci., 2013, vol. 69, pp. 43–9.

    Article  Google Scholar 

  54. R.A. Miller: J. Therm. Spray Technol., 1997, vol. 6, p. 35.

    Article  Google Scholar 

  55. N.P. Padture, M. Gell, and E.H. Jordan: Science, 2002, vol. 296, pp. 280–284.

    Article  Google Scholar 

  56. W.S. Walston, J.C. Schaeffer, and W.H. Murphy: Superalloys 1996, 1996, pp. 9–18.

    Google Scholar 

  57. W.S. Walston, K.S. O’Hara, E.W. Ross, T.M. Pollock, and W.H. Murphy: Superalloys, 1996, vol. 1996, pp. 27–34.

    Google Scholar 

  58. F. Pyczak, S. Neumeier, and M. Göken: Mater. Sci. Eng. A, 2009, vol. 510–511, pp. 295–300.

    Article  Google Scholar 

  59. K. Durst and M. Göken: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 312–6.

    Article  Google Scholar 

  60. G.L. Erickson: Superalloys, 1996, vol. 1996, p. 35.

    Google Scholar 

  61. S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken: Acta Mater., 2016, vol. 106, pp. 304–12.

    Article  Google Scholar 

  62. S. Schuwalow, J. Rogal, and R. Drautz: J. Phys. Condens. Matter, 2014, vol. 26, p. 485014.

    Article  Google Scholar 

  63. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.

    Article  Google Scholar 

  64. R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–3381.

    Article  Google Scholar 

  65. T. Link, A. Epishin, M. Klaus, U. Brückner, and A. Reznicek: Mater. Sci. Eng. A, 2005, vol. 405, pp. 254–65.

    Article  Google Scholar 

  66. L. Agudo Jácome, P. Nörtershäuser, J.-K. Heyer, A. Lahni, J. Frenzel, A. Dlouhy, C. Somsen, and G. Eggeler: Acta Mater., 2013, vol. 61, pp. 2926–43.

    Article  Google Scholar 

  67. A.C. Yeh and S. Tin: Scr. Mater., 2005, vol. 52, pp. 519–24.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) through projects B3, C6, B6, A5, A4, A1, and A7 of the collaborative research centre SFB/TR 103 “From Atoms to Turbine Blades—a Scientific Approach for Developing the Next Generation of Single Crystal Superalloys.” SKM, BG, DR are grateful to U. Tezins and A. Sturm for their technical support of the atom probe tomography and focused ion beam facilities at the Max-Planck-Institut für Eisenforschung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Volz.

Additional information

Manuscript submitted March 14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volz, N., Zenk, C.H., Cherukuri, R. et al. Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys. Metall Mater Trans A 49, 4099–4109 (2018). https://doi.org/10.1007/s11661-018-4705-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4705-1

Navigation