Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2019

01.03.2019

Fast Isothermal Solidification During Transient Liquid Phase Bonding of a Nickel Alloy Using Pure Copper Filler Metal: Solubility vs Diffusivity

verfasst von: Ali Ghasemi, Majid Pouranvari

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This investigation aims at understanding the underlying fundamentals of the isothermal solidification phenomenon during the transient liquid phase (TLP) bonding process. The isothermal solidification is governed by solid-state diffusion of the melting point depressant (MPD) into the base material, which, in turn, is controlled by both kinetic and thermodynamic parameters; however, the latter factor is generally ignored. In this work, the competition between kinetics and thermodynamics of diffusion were considered in TLP bonding of a nickel alloy, Monel 400, using two distinct filler metals including pure copper (Cu) and Ni-Si-B filler metal. The joint generated by Ni-Si-B filler metal exhibited two key features including the presence of eutectic-type solidification products, an indication of incomplete isothermal solidification, and the presence of liquated grain boundaries in the substrate. However, the joint generated using pure Cu filler metal exhibited neither liquated grain boundaries nor precipitates in the diffusion-affected zone (DAZ). Interestingly, a fast isothermal solidification was observed when bonding using Cu filler metal. Despite the lower diffusivity of Cu, as a substitutional MPD in Ni-base substrate, compared to that of B, as an interstitial MPD, its higher solid solubility in the substrate provides a larger thermodynamic driving force for diffusion-induced isothermal solidification. Moreover, due to the high partitioning ratio of Cu in the Ni-base substrate and, hence, the lower difference between MPD solubility in liquid and solid phases, the required number of MPD atoms that should diffuse from the liquid phase into the base metal (BM) to complete isothermal solidification is much lower than that of B-containing filler metals. Therefore, both diffusivity and solubility of the MPD element should be considered in filler metal selection for achieving a fast isothermal solidification during TLP bonding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Kapoor, Ö.N. Doğan, C.S. Carney, R.V. Saranam, P. McNeff, and B.K. Paul: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3343–56.CrossRef M. Kapoor, Ö.N. Doğan, C.S. Carney, R.V. Saranam, P. McNeff, and B.K. Paul: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3343–56.CrossRef
3.
Zurück zum Zitat O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2787–96.CrossRef O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2787–96.CrossRef
4.
Zurück zum Zitat N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, and Z.Q. Hu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1793–1804.CrossRef N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, and Z.Q. Hu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1793–1804.CrossRef
5.
Zurück zum Zitat M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Compd., 2013, vol. 563, pp. 143–49.CrossRef M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Compd., 2013, vol. 563, pp. 143–49.CrossRef
6.
Zurück zum Zitat D.S. Duvall: Weld. J., 1974, vol. 43, pp. 203–14. D.S. Duvall: Weld. J., 1974, vol. 43, pp. 203–14.
7.
Zurück zum Zitat W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.CrossRef W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.CrossRef
8.
Zurück zum Zitat Y. Zhou, W.F. Gale, and T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–96.CrossRef Y. Zhou, W.F. Gale, and T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–96.CrossRef
9.
Zurück zum Zitat W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.CrossRef W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.CrossRef
10.
11.
Zurück zum Zitat M. Khakian, S. Nategh, and S. Mirdamadi: J. Alloy. Compd., 2015, vol. 653, pp. 386–94.CrossRef M. Khakian, S. Nategh, and S. Mirdamadi: J. Alloy. Compd., 2015, vol. 653, pp. 386–94.CrossRef
12.
Zurück zum Zitat M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher: Mater. Sci. Eng. A, 2007, vol. 447, pp. 125–33.CrossRef M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher: Mater. Sci. Eng. A, 2007, vol. 447, pp. 125–33.CrossRef
13.
Zurück zum Zitat N.P. Wikstrom, A.T. Egbewande, and O.A. Ojo: J. Alloy Compd., 2008, vol. 460, pp. 379–85.CrossRef N.P. Wikstrom, A.T. Egbewande, and O.A. Ojo: J. Alloy Compd., 2008, vol. 460, pp. 379–85.CrossRef
14.
15.
Zurück zum Zitat M. Pouranvari, A. Ekrami, and A.H. Kokabi: Can. Metall. Q., 2014, vol. 53, pp. 38–46.CrossRef M. Pouranvari, A. Ekrami, and A.H. Kokabi: Can. Metall. Q., 2014, vol. 53, pp. 38–46.CrossRef
16.
Zurück zum Zitat O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 532–40.CrossRef O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 532–40.CrossRef
17.
Zurück zum Zitat M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy Compd., 2009, vol. 469, pp. 270–75.CrossRef M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy Compd., 2009, vol. 469, pp. 270–75.CrossRef
18.
Zurück zum Zitat M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Technol., 2013, vol. 29, pp. 980–84.CrossRef M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Technol., 2013, vol. 29, pp. 980–84.CrossRef
19.
Zurück zum Zitat O.A. Ojo, N.L. Richards, and M.C. Charturvedi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 209–20.CrossRef O.A. Ojo, N.L. Richards, and M.C. Charturvedi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 209–20.CrossRef
20.
Zurück zum Zitat G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.CrossRef G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.CrossRef
21.
Zurück zum Zitat M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Comp., 2008, Vol. 461, pp. 641–47.CrossRef M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Comp., 2008, Vol. 461, pp. 641–47.CrossRef
22.
Zurück zum Zitat F. Jalilian, M. Jahazi, and R.A.L. Drew: Mater. Sci. Eng. A, 2006, vol. 423, pp. 269–81.CrossRef F. Jalilian, M. Jahazi, and R.A.L. Drew: Mater. Sci. Eng. A, 2006, vol. 423, pp. 269–81.CrossRef
23.
Zurück zum Zitat M. Mosallaee, A. Ekrami, K. Ohsasa, and K. Matsuura: Metall. Mater. Trans. A, 2008, vol. 39A, p. 2389.CrossRef M. Mosallaee, A. Ekrami, K. Ohsasa, and K. Matsuura: Metall. Mater. Trans. A, 2008, vol. 39A, p. 2389.CrossRef
24.
Zurück zum Zitat S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3545–53.CrossRef S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3545–53.CrossRef
25.
Zurück zum Zitat A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, in press. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, in press.
26.
Zurück zum Zitat T.C. Illingworth, I.O. Golosnoy, and T.W. Clyne: Mater. Sci. Eng. A, 2007, vol. 445, pp. 493–500.CrossRef T.C. Illingworth, I.O. Golosnoy, and T.W. Clyne: Mater. Sci. Eng. A, 2007, vol. 445, pp. 493–500.CrossRef
27.
Zurück zum Zitat T. Shinmura, K. Ohsasa, and T. Narita: Mater. Trans., 2001, vol. 42, pp. 292–97.CrossRef T. Shinmura, K. Ohsasa, and T. Narita: Mater. Trans., 2001, vol. 42, pp. 292–97.CrossRef
28.
Zurück zum Zitat J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, vol. 213, pp. 20–29.CrossRef J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, vol. 213, pp. 20–29.CrossRef
29.
Zurück zum Zitat A. Ghoneim and O.A. Ojo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 900–11.CrossRef A. Ghoneim and O.A. Ojo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 900–11.CrossRef
30.
Zurück zum Zitat O.A. Ojo and O. Aina: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1481–85.CrossRef O.A. Ojo and O. Aina: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1481–85.CrossRef
31.
Zurück zum Zitat D.R. Askeland and P.P. Phulé: The Science and Engineering of Materials, Brooks/Cole-Thomson Learning, Monterey, CA, 2003. D.R. Askeland and P.P. Phulé: The Science and Engineering of Materials, Brooks/Cole-Thomson Learning, Monterey, CA, 2003.
32.
Zurück zum Zitat O.A. Idowu, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2005, vol. 397, pp. 98–112.CrossRef O.A. Idowu, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2005, vol. 397, pp. 98–112.CrossRef
33.
Zurück zum Zitat N.P. Wikstrom, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2006, vol. 417, pp. 299–306.CrossRef N.P. Wikstrom, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2006, vol. 417, pp. 299–306.CrossRef
34.
Zurück zum Zitat R. Bakhtiari, A. Ekrami, and T.I. Khan: Mater. Sci. Eng. A, 2012, vol. 546, pp. 291–300.CrossRef R. Bakhtiari, A. Ekrami, and T.I. Khan: Mater. Sci. Eng. A, 2012, vol. 546, pp. 291–300.CrossRef
35.
Zurück zum Zitat R.K. Saha and T.I. Khan: J. Mater. Eng. Perform., 2006, vol. 15, pp. 722–28.CrossRef R.K. Saha and T.I. Khan: J. Mater. Eng. Perform., 2006, vol. 15, pp. 722–28.CrossRef
36.
Zurück zum Zitat B. Abbasi-Khazaei, G. Asghari, and R. Bakhtiari: Weld. J., 2016, 95, 68–76. B. Abbasi-Khazaei, G. Asghari, and R. Bakhtiari: Weld. J., 2016, 95, 68–76.
37.
Zurück zum Zitat H. Kokawa, C.H. Lee, and T.H. North: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1627–31.CrossRef H. Kokawa, C.H. Lee, and T.H. North: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1627–31.CrossRef
38.
Zurück zum Zitat M. Pouranvari, A. Ekrami, and A.H. Kokabi: Sci. Technol. Weld. Join., 2018, vol. 1, pp. 13–18.CrossRef M. Pouranvari, A. Ekrami, and A.H. Kokabi: Sci. Technol. Weld. Join., 2018, vol. 1, pp. 13–18.CrossRef
39.
Zurück zum Zitat A.G. Bigvand, O.A. Ojo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1670–74.CrossRef A.G. Bigvand, O.A. Ojo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1670–74.CrossRef
40.
Zurück zum Zitat M.M. Abdelfatah and O.A. Ojo: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 377–85.CrossRef M.M. Abdelfatah and O.A. Ojo: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 377–85.CrossRef
41.
Zurück zum Zitat A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 441–48.CrossRef A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 441–48.CrossRef
42.
Zurück zum Zitat W.G. Moffatt: The Handbook of Binary Phase Diagrams, vols. 1, General Electric Co., Schenectady, NY, 1976. W.G. Moffatt: The Handbook of Binary Phase Diagrams, vols. 1, General Electric Co., Schenectady, NY, 1976.
43.
Zurück zum Zitat W.F. Gale and E.R. Wallach: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2451–57.CrossRef W.F. Gale and E.R. Wallach: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2451–57.CrossRef
44.
Zurück zum Zitat S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2226–32.CrossRef S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2226–32.CrossRef
45.
Zurück zum Zitat D.J. Chakrabarti and D.E. Laughlin: J. Phase Equilib., 1982, vol. 3, pp. 45–48.CrossRef D.J. Chakrabarti and D.E. Laughlin: J. Phase Equilib., 1982, vol. 3, pp. 45–48.CrossRef
46.
Zurück zum Zitat J.C. Lippold, S.D. Kiser, and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, New York, NY, 2011. J.C. Lippold, S.D. Kiser, and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, New York, NY, 2011.
Metadaten
Titel
Fast Isothermal Solidification During Transient Liquid Phase Bonding of a Nickel Alloy Using Pure Copper Filler Metal: Solubility vs Diffusivity
verfasst von
Ali Ghasemi
Majid Pouranvari
Publikationsdatum
01.03.2019
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05149-5

Weitere Artikel der Ausgabe 5/2019

Metallurgical and Materials Transactions A 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.