Skip to main content
Log in

A new hot-tearing criterion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new criterion for the appearance of hot tears in metallic alloys is proposed. Based upon a mass balance performed over the liquid and solid phases, it accounts for the tensile deformation of the solid skeleton perpendicular to the growing dendrites and for the induced interdendritic liquid feeding. This model introduces a critical deformation rate (\(\dot \varepsilon _{p,\max } \)) beyond which cavitation, i.e., nucleation of a first void, occurs. As should be expected, this critical value is an increasing function of the thermal gradient and permeability and a decreasing function of the viscosity. The shrinkage contribution, which is also included in the model, is shown to be of the same order of magnitude as that associated with the tensile deformation of the solid skeleton. A hot-cracking sensitivity (HCS) index is then defined as \(\dot \varepsilon _{_{p,\max } }^{ - 1} \). When applied to a variable-concentration aluminum-copper alloy, this HCS criterion can reproduce the typical “Λ curves” previously deduced by Clyne and Davies on a phenomenological basis. The calculated values are in fairly good agreement with those obtained experimentally by Spittle and Cushway for a non-grain-refined alloy. A comparison of this criterion to hot cracks observed in ring-mold solidification tests indicates cavitation depression of a few kilo Pascal and tensile stresses in the coherent mushy zone of a few mega Pascal. These values are discussed in terms of those obtained by other means (coherency measurement, microporosity observation, and simulation). Even though this HCS criterion is based only upon the appearance of a first void and not on its propagation, it sets up for the first time a physically sound basis for the study of hot-crack formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1989.

    Google Scholar 

  2. J. Campbell: Castings, Butterworth-Heinemann, Oxford, United Kingdom, 1991.

    Google Scholar 

  3. T.S. Piwonka and M.C. Flemings: Trans. AIME, 1966, vol. 236, pp. 1157–65.

    CAS  Google Scholar 

  4. K. Kubo and R.D. Pehlke: Metall. Trans. B, 16B (1985) 359–66.

    CAS  Google Scholar 

  5. J. Ampuero, Ch. Charbon, A.F.A. Hoadley, and M. Rappaz: in Materials Processing in the Computer Age, V.R. Voller, M.S. Stachowicz, and B.G. Thomas, eds., TMS, Warrendale, PA, 1991, pp. 377–88.

    Google Scholar 

  6. T.W. Clyne and G.J. Davies: Br. Foundryman, 1981, vol. 74, pp. 65–73; Br. Foundryman, 1975, vol. 68, pp. 238–44.

    Google Scholar 

  7. F. Matsuda, H. Nakagawa, S. Katayama, and Y. Arata: Trans. Jpn. Weld. Soc. 13 (1982) 115–32; Trans. Welding Res. Inst., Osaka Univ. 6 (1977) 197–206; Trans. Welding Res. Inst., Osaka Univ., 5 (1976) 135–51.

    CAS  Google Scholar 

  8. U. Feurer: Giesserei Forsch., 2 (1976) 75–80.

    Google Scholar 

  9. R. Jauch: Stahl Eisen 98 (1978) 244–54.

    CAS  Google Scholar 

  10. T.W. Clyne, M. Wolf, and W. Kurz: Metall. Trans. B, 13B (1982) 259–66.

    CAS  Google Scholar 

  11. Y.F. Guven and J.D. Hunt: Cast Met., 1 (1988) 104–11.

    Google Scholar 

  12. D. Warrington and D.G. McCartney: Cast Met., 2 (1989) 134–143.

    Google Scholar 

  13. J. Campbell and T.W. Clyne: Cast Met., 3 (1991) 224–26.

    Google Scholar 

  14. J.-M. Drezet and M. Rappaz: in Modeling of Casting, Welding and Advanced Solidification Processes VIII, B.G. Thomas, C. Beckermann, and I. Ohnaka, eds., TMS, Warrendale, PA, 1998, pp. 883–90.

    Google Scholar 

  15. Guocai Chai: Ph.D. Thesis, Chem. Communic., Stockholm, 1994, No 1.

    Google Scholar 

  16. P. Vicente: Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, 1994.

    Google Scholar 

  17. P. Ackermann, W. Kurz, and W. Heinemann: Mater. Sci. Eng., 75 (1985) 79–86.

    Article  CAS  Google Scholar 

  18. W. Kurz: private communication, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1996.

    Google Scholar 

  19. H. Esaka, W. Kurz, and R. Trivedi: in Solidification Processing, J. Beech and H. Jones, eds., Institute of Metals, London, 1988, pp. 198–201.

    Google Scholar 

  20. C.Y. Wang and C. Beckermann: Metall. Trans. A, 24A (1993) 2787–2802.

    CAS  Google Scholar 

  21. E. Niyama, T. Uchida, M. Morikawa, and S. Saito: AFS Int. Cast Met. J., 1982, Sept., pp. 52–63.

  22. J.A. Spittle and A.A. Cushway: Met. Technol., 1983, vol. 10, pp. 6–13.

    CAS  Google Scholar 

  23. P. Rousset, M. Rappaz, and B. Hannart: Metall. Trans. A, 1995, vol. 26A, pp. 2349–58.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rappaz, M., Drezet, J.M. & Gremaud, M. A new hot-tearing criterion. Metall Mater Trans A 30, 449–455 (1999). https://doi.org/10.1007/s11661-999-0334-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0334-z

Keywords

Navigation