Skip to main content
Log in

A study on heat source equations for the prediction of weld shape and thermal deformation in laser microwelding

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the area of laser welding, numerous studies have been performed in the past decades using either analytical or numerical approaches, or both combined. However, most of the previous studies were process oriented and modeled conduction and keyhold welding differently. In this research, various heat source equations that have been proposed in previous studies were calculated and compared with a new model. This is to address the problem of predicting, by numerical means, the thermomechanical behavior of laser spot welding for thin stainless steel plates. A finite-element model (FEM) code, ABAQUS, is used for the heat transfer and mechanical analysis with a three-dimensional plane assumption. Experimental studies of laser spot welding and measurement of thermal deformation have also been conducted to validate the numerical models presented. The results suggest that temperature profiels and weld deformation vary according to the heat source equation of the laser beam. For this reason, it is essential to incorporate an accurate model of the heat source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

P(t) :

time-dependent laser power (W)

ρ(T) :

temperature-dependent density (kg m−3)

C(T) :

temperature-dependent specific heat capacity (J kg−1 K−1)

K(T) :

temperature-dependent thermal conductivity (W m−1 K−1)

Q :

power generation per unit volume in the domain (W m−3)

k n :

thermal conductivity normal to surfaces that are subject to radiation, convection, and imposed heat fluxes (W m−1 K−1)

q :

heat flux (W m−2)

h :

heat-transfer coefficient for convection (W m−2 K−1)

σ :

Stefan-Boltzmann constant for radiation (W m−2 K−4)

ε :

emissivity

T Sol :

solidus temperature (K)

T Liq :

liquidus temperature (K)

References

  1. D. Rosenthal: Trans. ASME, 1946, vol. 43, pp. 849–66.

    Google Scholar 

  2. W.M. Steen, J. Dowden, M. Davis, and P. Kapadia: J. Phys. D: Appl. Phys., 1988, vol. 21, pp. 1255–60.

    Article  Google Scholar 

  3. J. Mazumder and W.M. Steen: J. Appl. Phys., 1980, vol. 51, pp. 941–47.

    Article  Google Scholar 

  4. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy: Weld. J., 1989, vol. 68, pp. 499s-509s.

    Google Scholar 

  5. T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 957–67.

    CAS  Google Scholar 

  6. J.D. Kim: KSME J., 1990, vol. 4, pp. 32–39.

    Google Scholar 

  7. O.O.D. Neto and C.A.S. Lima: J. Phys. D: Appl. Phys., 1994, vol. 27, pp. 1795–1804.

    Article  Google Scholar 

  8. N. Sonti and M.F. Amateau: Num. Heat Transfer, 1989, vol. 16A, pp. 351–70.

    Google Scholar 

  9. R. Mueller: Proc. ICALEO ’94, 1994, pp. 509–18.

  10. H. Hügel: Strahlwerkzeug Laser, Teubner, Stuttgart, 1992.

    Google Scholar 

  11. V.V. Semak and A. Matsunawa: J. Phys. D: Appl. Phys., 1997, vol. 30, pp. 2541–52.

    Article  CAS  Google Scholar 

  12. V.V. Semak, B. Damkroger, and S. Kempka: J. Phys. D: Appl. Phys., 1999, vol. 32, pp. 1819–25.

    Article  CAS  Google Scholar 

  13. S.I. Anisimov and V.A. Khoklov: Instabilities in Laser-Matter Interaction, CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  14. M.R. Frewin and D. A. Scott: Weld. J., 1999, vol. 78, pp. 15s-22s.

    Google Scholar 

  15. Y. Matsuhiro, Y. Inaba, and T. Ohji: Jpn. Weld. Soc., 1993, vol. 11, pp. 479–83.

    Google Scholar 

  16. W.M. Steen: Laser Material Processing, Springer-Verlag, New York, NY, 1991.

    Google Scholar 

  17. A. Kaplan: J. Phys. D: Appl. Phys., 1994, vol. 27, pp. 1805–14.

    Article  CAS  Google Scholar 

  18. P. Tekriwal and J. Mazumder: Weld J., 1988, vol. 67, pp. 150s-156s

    Google Scholar 

  19. J. Wilson and J.F.B. Hawkes: Lasers: Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  20. ABAQUS Theory Manual, Version 5.4, Hibbitt, Kalsson & Sorensen, Inc., Pawtucket, RI, 1994.

  21. M. Sjödahl: Optics Lasers Eng., 1998, vol. 29, pp. 125–44.

    Article  Google Scholar 

  22. N.K. Mohan, H. Saldner, and N.E. Molin: Optics Lett., 1993, vol. 18, pp. 1861–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, W.S., NA, S.J. A study on heat source equations for the prediction of weld shape and thermal deformation in laser microwelding. Metall Mater Trans B 33, 757–764 (2002). https://doi.org/10.1007/s11663-002-0029-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-002-0029-y

Keywords

Navigation