Skip to main content
Log in

Continuous oxygen steelmaking with copper-, tin-, and zinc-contaminated scrap

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the context of a new zero-gas-emission process for continuous oxygen steelmaking, desorption of copper, tin, and zinc from liquid scrap are modeled. Additive diffusional-resistance concepts show that zinc elimination at atmospheric pressure is entirely straightforward. For copper and tin, a reduced pressure (2.5 mbar) and a relatively high temperature (1780 °C) are preferred. Sulfur must be added above the stoichiometric requirements to volatilize tin sulfide. Copper elimination by physical desorption is completely predictable, but with tin, interfacial chemical kinetics may possibly exert an influence. Based on exclusive transport control and the currently available pumping capacity for vacuum degassing steel, the engineering feasibility of refining continuously melted steel scrap is established. Dimensions are estimated for producing 2 Mtpa of steel with a scrap-to-virgin iron ratio of 3 to 1. Electrical conductive heating is required to raise the liquid-scrap temperature toward the limits imposed by current refractories. With the proposed new technology, copper, tin, and zinc are all recovered as by-product metals. Pretreatment of steel scrap is not advocated, other than simple physical segregation at the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.A. Warner: Proc. Yazawa Int. Symp. on Metallurgical and Materials Processing, 132nd TMS Annual Meeting, San Diego, CA, Mar. 2–6, 2003, TMS Warrendale, PA, 2003, vol. 1, pp. 881–900.

    Google Scholar 

  2. N.A. Warner: Ironmaking and Steelmaking, 2003, vol. 30 (6), pp. 429–34.

    Article  CAS  Google Scholar 

  3. N.A. Warner: Ironmaking and Steelmaking, 2003, vol. 30 (6), pp. 435–40.

    Article  CAS  Google Scholar 

  4. F. Wagner: Rev. Metall.-CIT, 1997, vol. 94, pp. 35–46.

    Google Scholar 

  5. R.J. Fruehan and C.L. Nassaralla: ISS Trans.-Iron Steelmaker, 1998, Aug., pp. 59–68.

  6. F. Oeters, L. Zhang, and R. Steffen: Proc. Ethem T. Turdogan Symp., R.J. Fruehan, ed., ISS, Warrendale, PA, 1994, pp. 23–43.

    Google Scholar 

  7. J.A. Innes: Proc. Howard Worner Int. Symp. on Injection in Pyrometallurgy, M. Nilmani and T. Lehner, eds., TMS, Warrendale, PA, 1996, p. 3.

    Google Scholar 

  8. J.A. Weber, T.F. Fisher, and D.P. Bonaquist: U.S. Patent 5,925.158, 1999.

  9. S.W.K. Morgan: Trans. Inst. Mining Met., 1956–57, vol. 66, pp. 553–565; 1957–58, vol. 67, pp. 127–38.

    Google Scholar 

  10. S. Krishnan, J.K.R. Weber, P.C. Nordine, R.A. Schiffman, R.H. Hauge, and J.L. Margrave: High Temp. Sci., 1990, vol. 30 (2–3), pp. 137–53.

    CAS  Google Scholar 

  11. D.G. Mead and G.R. Wilkinson: Proc. R. Soc. London, Ser. A, 1977, vol. 354 (1678), pp. 349–66.

    Google Scholar 

  12. J.A.T. Jones: Iron and Steelmaker, 1997, Feb. pp. 41–42.

  13. N.A. Warner: Proc. AusIMM Ann. Conf., Perth, Western Australia, 1996, pp. 145–53.

  14. R. Boom and R. Steffen: Steel Res., 2001, vol. 72 (3), pp. 91–96.

    CAS  Google Scholar 

  15. N. A. Warner: U.K. Patent GB 2193975B, 1990.

  16. N.A. Warner: Australian Patent Application No. 4266/61, 1961.

  17. P.J. Mackey: Ph.D. Thesis, The University of New South Wales, Sydney, NSW, Australia, 1969.

    Google Scholar 

  18. J.B. See: Ph.D. Thesis, The University of New South Wales, Sydney, NSW, Australia, 1970.

    Google Scholar 

  19. D.L. Regozo: Ph.D. Thesis, The University of New South Wales, Sydney, NSW, Australia, 1971.

    Google Scholar 

  20. N.A. Warner: Proc. Symp. on Advances in Extractive Metallurgy, IMM, London, pp. 317–32.

  21. J.G. Herbertson and N.A. Warner: Trans. Inst. Min. Metall. Sect. C, 1973, vol. 82, pp. C16-C20.

    CAS  Google Scholar 

  22. L. Savov and D. Janke: Iron Steel Inst. Jpn. Int., 2000, vol. 40 (2), pp. 95–104.

    CAS  Google Scholar 

  23. N.A. Warner: Chem. Eng. Sci., 1959, vol. 11, pp. 161–82.

    Article  CAS  Google Scholar 

  24. P.M. Tait: Ph.D. Thesis, The University of Birmingham, Birmingham, 1998.

    Google Scholar 

  25. M. Hino, S. Wang, T. Nagasaka, and S. Ban-ya: Iron Steel Inst. Jpn. Int., 1994, vol. 4, pp. 491–97.

    Google Scholar 

  26. B. Ozturk and R.J. Fruehan: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1996, pp. 583–88.

    Google Scholar 

  27. R. Harris and W. Davenport: Can. Met. Q., 1979, vol. 18, pp. 303–11.

    CAS  Google Scholar 

  28. R. Harris: U.S. Patent 4,378,242, 1983.

  29. T. Emi and O. Wijk: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1996, pp. 551–65.

    Google Scholar 

  30. T. Nagasaka, M. Hino, and S. Ban-ya: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1996, pp. 589–96.

    Google Scholar 

  31. N.A. Warner: Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C), 2003, vol. 112 (3), pp. C141-C154.

    Article  CAS  Google Scholar 

  32. L. Savov, S. Tu, and D. Janke: Iron Steel Inst. Jpn. Int., 2000, vol. 40 (7), pp. 654–63.

    CAS  Google Scholar 

  33. X. Liu and J.H.E. Jeffes: Ironmaking and Steelmaking, 1988, vol. 15 (1), pp. 21–26.

    CAS  Google Scholar 

  34. X. Liu and J.H.E. Jeffes: Ironmaking and Steelmaking, 1988, vol. 15 (1), pp. 27–32.

    CAS  Google Scholar 

  35. D.V. Barradell, P. Dawson, R.I. Blake, and C. Priday: Iron Steelmaker, 1995, July, pp. 29–34.

  36. N.A. Warner: Metallurgical Processes for Early 21st Century, H.Y. Sohn, ed., TMS, Warrendale, PA, 1994, pp. 351–69.

    Google Scholar 

  37. A. Roine: Outokumpu HSC Chemistry for Windows, Outokumpu Research Oy., Pori, Finland, 1993, version 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, N.A. Continuous oxygen steelmaking with copper-, tin-, and zinc-contaminated scrap. Metall Mater Trans B 35, 663–674 (2004). https://doi.org/10.1007/s11663-004-0007-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0007-7

Keywords

Navigation