Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 6/2011

01.12.2011

Mathematical Modeling of the Solidification Structure Evolution in the Presence of Ultrasonic Stirring

verfasst von: Laurentiu Nastac

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 6/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ultrasonic treatment (UST) was studied in this work to improve the quality of the cast ingots as well as to control the solidification structure evolution. Ultrasonically induced cavitation consists of the formation of small cavities (bubbles) in the molten metal followed by their growth, pulsation, and collapse. These cavities are created by the tensile stresses that are produced by acoustic waves in the rarefaction phase. The pressure for nucleation of the bubbles (e.g., cavitation threshold pressure) may decrease with increasing the amount of dissolved gases and especially with the amount of inclusions in the melt. Modeling and simulation of casting solidification of alloys with UST requires complex multiscale computations, from computational fluid dynamics (CFD) macroscopic modeling through mesoscopic to microscopic modeling, as well as strategies to link various length-scales emerged in modeling of microstructural evolution. The developed UST modeling approach is based on the numerical solution of the Lilley model (that is founded on Lighthills’s acoustic analogy), fluid flow, heat transfer equations, and mesoscopic modeling of the grain structure. The CFD analysis tool is capable of modeling acoustic streaming and ultrasonic cavitation. It is used in this work to study ingot solidification under the presence of ultrasound. The UST model was applied to low-temperature alloys including Al- and Mg-based alloys. Although the predicted ultrasonic cavitation region is relatively small, the acoustic streaming is strong and, thus, the created/survived bubbles/nuclei are transported into the bulk liquid quickly. The predicted grain size under UST condition is at least one order of magnitude lower than that without UST.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat O.V. Abramov: High-Intensity Ultrasonics: Theory and Industrial Applications, Gordon and Breach Science Publishers, New York, NY, 1998. O.V. Abramov: High-Intensity Ultrasonics: Theory and Industrial Applications, Gordon and Breach Science Publishers, New York, NY, 1998.
2.
Zurück zum Zitat G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach Science Publishers, New York, NY, 1998. G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach Science Publishers, New York, NY, 1998.
3.
Zurück zum Zitat L.D. Rosenberg, ed.: Sources of High-Intensity Ultrasound, Plenum Press, New York, NY, vols. 1–2, 1969. L.D. Rosenberg, ed.: Sources of High-Intensity Ultrasound, Plenum Press, New York, NY, vols. 1–2, 1969.
4.
Zurück zum Zitat J. Campbell: Int. Met. Rev., 1981, vol. 26, pp. 71-108. J. Campbell: Int. Met. Rev., 1981, vol. 26, pp. 71-108.
5.
Zurück zum Zitat X. Jian, T.T. Meek, and Q. Han: Scripta Mater., 2006, vol. 54, pp. 893-96.CrossRef X. Jian, T.T. Meek, and Q. Han: Scripta Mater., 2006, vol. 54, pp. 893-96.CrossRef
6.
Zurück zum Zitat X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett, 2005, vol. 59, pp. 190-93.CrossRef X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett, 2005, vol. 59, pp. 190-93.CrossRef
7.
Zurück zum Zitat T.T. Meek and Q. Han: Ultrasonic Processing of Materials, Final DOE Technical Report, Oak Ridge National Laboratory, 2006. T.T. Meek and Q. Han: Ultrasonic Processing of Materials, Final DOE Technical Report, Oak Ridge National Laboratory, 2006.
8.
Zurück zum Zitat Fluent 6.3 User’s Guide Manual (Fluent Inc., 2006). Fluent 6.3 User’s Guide Manual (Fluent Inc., 2006).
9.
Zurück zum Zitat C.E. Brennen: Cavitation and Bubble Dynamics, Oxford University Press, New York, 1995, p. 51. C.E. Brennen: Cavitation and Bubble Dynamics, Oxford University Press, New York, 1995, p. 51.
10.
Zurück zum Zitat N.H. El Kaddah and D.G.C. Robertson: J. Coloids Interface Sci., 1977, vol. 60, no. 2, pp. 349-60.CrossRef N.H. El Kaddah and D.G.C. Robertson: J. Coloids Interface Sci., 1977, vol. 60, no. 2, pp. 349-60.CrossRef
11.
Zurück zum Zitat A.D. Pierce: Acoustics: An Introduction to its Physical Principles and Applications, McGraw-Hill, Columbus, OH, 1981. A.D. Pierce: Acoustics: An Introduction to its Physical Principles and Applications, McGraw-Hill, Columbus, OH, 1981.
12.
Zurück zum Zitat B.E. Noltingk and E.A. Neppiras: Proc. Phys. Soc., 1951, vol. 64B, p. 1032. B.E. Noltingk and E.A. Neppiras: Proc. Phys. Soc., 1951, vol. 64B, p. 1032.
13.
Zurück zum Zitat J. Rayleigh: Phil. Mag., 1917, vol. 34, p. 94. J. Rayleigh: Phil. Mag., 1917, vol. 34, p. 94.
14.
Zurück zum Zitat L. Nastac: Modeling and Simulation of Microstructure Evolution in Solidifying Alloys, Springer, New York, NY, 2004. L. Nastac: Modeling and Simulation of Microstructure Evolution in Solidifying Alloys, Springer, New York, NY, 2004.
15.
Zurück zum Zitat L. Nastac: Acta Metall., 1999, vol. 47, no. 17, pp. 4253-62. L. Nastac: Acta Metall., 1999, vol. 47, no. 17, pp. 4253-62.
16.
Zurück zum Zitat X. Li: Research Progress on Ultrasonic Cavitation Based Dispersion of Nanoparticles in Al/Mg Melts for Solidification Processing of Bulk Lightweight Metal Matrix Nanocomposites, TMS, Annual Meeting, Orlando, FL, 2007. X. Li: Research Progress on Ultrasonic Cavitation Based Dispersion of Nanoparticles in Al/Mg Melts for Solidification Processing of Bulk Lightweight Metal Matrix Nanocomposites, TMS, Annual Meeting, Orlando, FL, 2007.
17.
Zurück zum Zitat L. Nastac and Y. Dai: Ultrasonic Model Development and Applications to Ingot Casting Processes, 2008 International Ansys Conference, Pittsburgh, PA, 2008. L. Nastac and Y. Dai: Ultrasonic Model Development and Applications to Ingot Casting Processes, 2008 International Ansys Conference, Pittsburgh, PA, 2008.
Metadaten
Titel
Mathematical Modeling of the Solidification Structure Evolution in the Presence of Ultrasonic Stirring
verfasst von
Laurentiu Nastac
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 6/2011
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-011-9539-9

Weitere Artikel der Ausgabe 6/2011

Metallurgical and Materials Transactions B 6/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.