Skip to main content

Advertisement

Log in

The Origin of Griffith Cracks

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

As a result of the extremely strong interatomic bonds, pores and cracks are difficult to form in metals. They seem unlikely to be created intrinsically by the normal mechanisms involved in the formation of a solid by solidification from liquid, or condensation from vapor phases, or probably, by lattice mechanisms in the solid state. It is proposed here that initiation sites for pores and cracks for most failures of metals can only be initiated from unbonded interfaces. Such unbonded defects are introduced into metals only via extrinsic (entrainment) mechanisms resulting from production processes, particularly melting and casting. Only entrained inclusions, particularly bifilms, have unbonded interfaces that can be opened to constitute Griffith cracks and can explain the initiation of macroscopic fracture and related microscopic processes, such as a decohesion between the second phases and a matrix. In the absence of entrained defects, metals would be predicted to fail in tension only either (1) at high stresses probably in excess of 20 GPa or (2) by ductile flow to the point of 100 pct reduction in area. Improved melting and casting processes giving freedom from entrained defects promise unprecedented performance and reliability of engineering metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.H. Cottrell: The Griffith Centenary Meeting, Institute of Materials, London, UK, 1993, pp. 4-15.

    Google Scholar 

  2. A.H. Cottrell: Proc. Roy. Soc. A, 1963, vol. 279, pp. 1-10.

    Google Scholar 

  3. P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, UK, 1990.

  4. J.F. Knott: in Recent Advances in Fracture, R.K. Mahidhara, ed., TMS, Warrendale, PA, 1997.

  5. J. Campbell: The Solidification of Metals, 1968, vol. 110, pp. 18-26.

    Google Scholar 

  6. J.C. Fisher: J. Appl. Phys., 1948, vol. 19, pp. 1062-67.

    Article  Google Scholar 

  7. D. Kuhlmann-Wilsdorf: in Lattice Defects in Quenched Metals, Academic Press, New York, NY, 1965.

  8. P. Moser, C. Corbel, P. Lucasson, and P. Hautojarvi: Mater. Sci. Forum, 1987, vols. 15–18, pp. 925–30.

    Article  Google Scholar 

  9. A. Sen Gupta, P. Moser, A. Bourret, C. Corbel, S.V. Naidu, P. Sen, and P. Hautojarvi: Mater. Sci. Forum, 1987, vols. 15–18, pp. 931-36.

    Article  Google Scholar 

  10. C. Hellio, C.H. de Novion, A. Marraud, L. Boulanger: Mater. Sci. Forum, 1987, vols. 15-18, pp. 937-42.

    Article  Google Scholar 

  11. C. Weiberg and Y. Quere: Mater. Sci. Forum, 1987, vols. 15–18, pp. 943-48.

    Article  Google Scholar 

  12. B.P. Uberuaga, R.G. Hoagland, S.M. Valone, and A.F. Voter: Phys. Rev. Lett., 2007, vol. 99, pp. 135501-3.

    Article  CAS  Google Scholar 

  13. M.J. Sabochick, S. Yip, and N.Q. Lan: Mater. Sci. Forum, 1987, vols. 15–18, pp. 857-62.

    Article  Google Scholar 

  14. S. Traiviratana, G.M. Bringa, D.J. Benson, and M.A. Meyers; Acta Mater., 2008, vol. 56, pp. 3874-86.

    Article  CAS  Google Scholar 

  15. F. Milstein, J. Zhao, and D. Maroudas: Phys. Rev. B, 2004, vol. 70, 184102-1–184102-16.

  16. M.A. Meyers, S. Traiviratana, V.A. Lubarda, D.J. Benson, and E.M. Bringa: JOM, 2009, vol. 61, no. 2, pp. 35-41.

    Article  CAS  Google Scholar 

  17. J. Campbell: Mater. Sci. Technol., 2006, vol. 22, no. 2, pp. 127–45 and no. 8, pp. 999–1008.

  18. D. Dispinar and J. Campbell: Mater. Sci. Eng. A, 2011, vol. 528, nos. 10–11, pp. 3860–65.

    Google Scholar 

  19. J. Campbell: Mater. Sci. Technol., 2011, in press.

  20. J. Campbell: AFS Int. J. Metalcasting, 2008, vol. 2, no. 2, pp. 43-46.

    CAS  Google Scholar 

  21. J. Campbell: Mater. Sci. Technol., 2009, vol. 25, no. 1, pp. 125-26.

    Article  CAS  Google Scholar 

  22. H. Sina, M. Emamy, M. Saremi, A. Keyvani, M. Mahta, and J. Campbell: Mater. Sci. Eng. A, 2006, vol. 431, pp. 263-76.

    Article  Google Scholar 

  23. M. Emamy, R. Abbasi, S. Kaboli, and J. Campbell: Int. J. Cast Metals Res., 2009, vol. 22, no. 6, pp. 430-37.

    Article  CAS  Google Scholar 

  24. J. Campbell: Materials, 2011, vol. 4 (7), pp. 1271–86.

  25. M. Tiryakioglu, J. Campbell, and C. Nyahumwa: Metall. Mater. Trans. B, 2011, DOI:10.1007/s11663-011-9577-3.

  26. J. Campbell and M. Tiryakioglu: Mater. Sci. Technol., 2010, vol. 26, no. 3, pp. 262-68.

    Article  CAS  Google Scholar 

  27. J.T. Staley, M. Tiryakioglu, and J. Campbell: Shape Casting: The 2nd Int. Symp., P.N. Crepeau, M. Tiryakioglu, and J. Campbell, eds., TMS, Warrendale, PA, 2007, pp. 159–66; Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 324–34 and vol. 465, pp. 136–45.

  28. W.D. Griffith, R. Raiszadeh, and A.O. Omotunde: Shape Casting: The 2nd Int. Symp, P.N. Crepeau, M. Tiryakioglu, and J. Campbell, eds., TMS Warrendale, PA, 2007, pp. 35–42.

  29. R.N. Lumley, T.B. Sercombe, and G.B. Schaffer: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 457-63.

    Article  CAS  Google Scholar 

  30. J. Campbell: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1009-10.

    Article  CAS  Google Scholar 

  31. J. Campbell and M. Tiryakioglu: Trans. Am. Foundry Soc., 2011, vol. 115, pp. 11-127.

    Google Scholar 

  32. M. Tiryakioglu, J. Campbell, and J.T. Staley: Scripta Mater., 2003, vol. 49, pp. 873-78.

    Article  CAS  Google Scholar 

  33. C.H. Caceres: Aluminum Trans., 1999, vol. 1, pp. 1-13.

    CAS  Google Scholar 

  34. M. Tiryakioglu: Ph.D. Dissertation, University of Birmingham, Birmingham, UK, 2002.

  35. J. Griffith, E.C. Oliver, M.E. Fitzpatrick, T.R. Finlayson, D. Viano, and Q. Wang: Shape Casting: The 2nd Int. Symp, P.N. Crepeau, M. Tiryakioglu, and J. Campbell, eds., TMS, Warrendale, PA, 2007, pp. 127–34.

  36. E. Orowan: Rep. Progr. Phys., 1948–1949, vol. 12, pp. 185–232.

  37. A. Kelly: Strong Solids, Clarendon Press, Oxford, UK, 1966.

  38. K. Gall, M.F. Horstemeyer, M. van Schilfgaarde, and M.I. Baskes: J. Mech. Phys. Solids. 2000. vol. 48. pp. 2183-2218.

    Article  CAS  Google Scholar 

  39. R.K. Govila and D. Hull: Acta Metall., 1968, vol. 16, pp. 45-52.

    Article  CAS  Google Scholar 

  40. M. Gernez: Phil. Mag., 1867, vol. 33, no. 4, pp. 79.

    Google Scholar 

  41. S. Mendelson: J. Appl. Phys., 1962, vol. 33, no. 7, pp. 2182-86.

    Article  CAS  Google Scholar 

  42. M. Emamy and J. Campbell: Cast Metals, 1995, vol. 8, pp. 115-22.

    Google Scholar 

  43. P.W. Bridgeman: Studies in Large Plastic Flow and Fracture (with Special Emphasis on the Effects of Hydrostatic Pressure, McGraw-Hill, Columbus, OH, 1952, pp. 38-86.

    Google Scholar 

  44. J. Campbell: Casting Practice; The 10 Rules for Casting, Elsevier, Atlanta, GA, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Campbell.

Additional information

Manuscript submitted July 7, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, J. The Origin of Griffith Cracks. Metall Mater Trans B 42, 1091–1097 (2011). https://doi.org/10.1007/s11663-011-9575-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9575-5

Keywords

Navigation