Skip to main content
Log in

Interfacial Reaction Between CaO-SiO2-MgO-Al2O3 Flux and Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) Steel at 1873 K (1600 °C)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study investigated the interfacial reaction kinetics and related phenomena between CaO-SiO2-MgO-Al2O3 flux and Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) steel, which simulates transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) steels at 1873 K (1600 °C). It also examines the effect of changes in the composition of the steel and slag phases on the interfacial reaction rate and the reaction mechanisms. The content of Al and Si in the 1 mass pct Al-containing steel was found to change rapidly within the first 15 minutes of the reaction, but then it remained relatively constant. The content of Al and Si in the 3 to 6 mass pct Al-containing steels, in contrast, changed continuously throughout the entire reaction time. In addition, the content of Mn in the 1 mass pct Al-containing steels initially decreased with increasing time, but the content did not change in the 3 to 6 mass pct Al-containing steels. Furthermore, the mass transfer coefficient of Al, k Al, in the 1 mass pct Al-containing systems was significantly higher than that in other systems; i.e., the k Al can be arranged such that 1 mass pct Al systems >> 3 mass pct Al systems ≥ 6 mass pct Al systems. The compositions of the final slags were close to the saturation lines of the [Mg,Mn]Al2O4 and MgAl2O4 spinels when the slags reacted with 1 mass pct Al and 3 to 6 mass pct Al-containing steels, respectively. These results, which show the effect of Al content on the reaction phenomena, can be explained by the significant increase in the apparent viscosity of the slags that reacted with the 3 to 6 mass pct Al-containing steels. This reaction was likely caused by the precipitation of solid compounds such as MgAl2O4 spinel and CaAl4O7 grossite at locally alumina-enriched areas in the slag phase. This analysis is in good accordance with the combination of Higbie’s surface renewal model and the Eyring equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.

    Article  Google Scholar 

  2. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater, 2010, vol. 58, pp. 2464–76.

    Article  CAS  Google Scholar 

  3. S.W. Hwang, J.H. Ji, and K.T. Park: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7267–75.

    Article  CAS  Google Scholar 

  4. AHSS Application Guidelines (version 4.1), IISI, http://www.worldautosteel.org, 2009, pp. 1–14.

  5. G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, pp. 627–33.

    CAS  Google Scholar 

  6. J.D. Yoo, S.W. Hwang, and K.T. Park: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1520–23.

    Article  CAS  Google Scholar 

  7. Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida: ISIJ Int., 2010, vol. 50, pp. 893–99.

    Article  CAS  Google Scholar 

  8. A. Dumay, J.P. Chateau, S. Allain, S. Miget, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 184–87.

  9. K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3651–61.

    Article  Google Scholar 

  10. A.S. Hamada, L.P. Karjalainen, and M.C. Somani: Mater. Sci. Eng. A, 2007, vol. 467, pp. 114–24.

    Article  Google Scholar 

  11. M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami: Mater. Sci. Eng. A, 2008, vol. 497, pp. 353–57.

    Article  Google Scholar 

  12. Y. Kim, N. Kim, Y. Park, I.Choi, G. Kim, S. Kim, and K. Cho: J. Kor. Inst. Metall. Mater., 2008, vol. 46, pp. 780–87.

  13. J.M. Jang, S.J. Kim, N.H. Kang, K.M. Cho, and D.W. Suh: Metall. Mater. Int., 2009, vol. 15, pp. 909–16.

    Article  CAS  Google Scholar 

  14. K. Ahn, D. Yoo, M.H. Seo, S.H. Park, and K. Chung: Metall. Mater. Int., 2009, vol. 15, pp. 637–47.

    Article  Google Scholar 

  15. K.G. Jin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.H. Kim, and N.J. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2922–28.

    Article  Google Scholar 

  16. J. Kim, S.J. Lee, and B.C. De Cooman: Scripta Mater., 2011, vol. 65, pp. 363–66.

  17. M.A. Rhamdhani, G.A. Brooks, and K.S. Coley: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 219–27.

    Article  CAS  Google Scholar 

  18. H. Sun and K. Mori: ISIJ Int., 1996, vol. 36, pp. S34–S37.

  19. S. Street, K. James, N. Minor, A. Roelant, and J. Tremp: Iron Steel Technol., 2008, pp. 38–49.

  20. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Proc. AISTech2011, vol. I, 2011, Indianapolis, IN, pp. 1577–86.

  21. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Proc. Eur. Cont. Cast. Conf. (ECCC2011), Mold Lubrication Session 9, 2011, Düsseldorf, Germany, CD-ROM paper.

  22. K.C. Mills: Making, Shaping and Treating of Steel, 11th ed., Casting Volume, AISE Steel Foundation, Pittsburgh, PA, 2003.

  23. X. Yu, G.H. Wen, P. Tang, and H. Wang: Ironmaking Steelmaking, 2009, vol. 36, pp. 623–30.

    Article  CAS  Google Scholar 

  24. Z. Zhang, G. Wen, P. Tang, and S. Sridhar: ISIJ Int., 2008, vol. 48, pp. 739–46.

    Article  CAS  Google Scholar 

  25. J.H. Park: Mater. Sci. Eng. A, 2008, vol. 472, pp. 43–51.

    Article  Google Scholar 

  26. J.H. Park, S.B. Lee, D.S. Kim, and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 337–42.

    Article  CAS  Google Scholar 

  27. J.H. Park, G.H. Park, D.J. Paik, Y. Huh, and M.H. Hong: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 195–207.

    Article  Google Scholar 

  28. J.H. Park, D.J. Kim, and D.J. Min: Metall. Mater. Trans. A, DOI: 10.1007/s11661-012-1088-6.

  29. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall, New York, NY, 1993.

    Google Scholar 

  30. D.G.C. Robertson, B. Deo, and S. Ohguchi: Ironmaking Steelmaking, 1984, vol. 11, pp. 41–55.

    CAS  Google Scholar 

  31. R.J. Pomfret and P. Grieveson: Can. Metall. Q., 1983, vol. 22, pp. 287–99.

    Article  CAS  Google Scholar 

  32. www.factsage.com, accessed November 2011.

  33. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, pp. 295–311.

    Article  CAS  Google Scholar 

  34. J.H. Park: J. Am. Ceram. Soc., 2006, vol. 89, pp. 608–15.

    Article  CAS  Google Scholar 

  35. J.H. Park and Y.B. Kang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 791–98.

    Article  CAS  Google Scholar 

  36. J.H. Park: CALPHAD, 2007, vol. 31, pp. 149–54.

    Article  CAS  Google Scholar 

  37. J.H. Park: CALPHAD, 2007, vol. 31, pp. 428–37.

    Article  CAS  Google Scholar 

  38. J.H. Park, S.B. Lee, and H.R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 853–61.

    Article  CAS  Google Scholar 

  39. M.O. Suk and J.H. Park: J. Am. Ceram. Soc., 2009, vol. 92, pp. 717–23.

    Article  CAS  Google Scholar 

  40. J.H. Park, I.H. Jung, and S.B. Lee: Metall. Mater. Int., 2009, vol. 15, pp. 677–81.

    Article  CAS  Google Scholar 

  41. J.H. Park: Metall. Mater. Int., 2010, vol. 16, pp. 987–92.

    Article  CAS  Google Scholar 

  42. J.H. Park, G.H. Park, and Y.E. Lee: ISIJ Int., 2010, vol. 50, pp. 1078–83.

    Article  CAS  Google Scholar 

  43. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333–46.

    Article  CAS  Google Scholar 

  44. J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 3181–86.

    Article  CAS  Google Scholar 

  45. J.H. Park, M.O. Suk, I.H. Jung, M. Guo, and B. Blanpain: Steel Res. Int., 2010, vol. 81, pp. 860–68.

    Article  CAS  Google Scholar 

  46. G.H. Park, Y.B. Kang, and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.

    Article  Google Scholar 

  47. J.H. Park: CALPHAD, 2011, vol. 35, pp. 455–62.

    Article  CAS  Google Scholar 

  48. K.Y. Ko and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1224–30.

    Article  Google Scholar 

  49. H. Sun, K. Nakashima, and K. Mori: ISIJ Int., 2006, vol. 46, pp. 407–12.

    Article  CAS  Google Scholar 

  50. S.C. Park, H. Gaye, and H.G. Lee: Ironmaking Steelmaking, 2009, vol. 36, pp. 3–11.

    Article  CAS  Google Scholar 

  51. H. Gaye, L.D. Lucas, M. Olette, and P.V. Riboud: Can. Metall. Q., 1984, vol. 23, pp. 179–91.

    Article  CAS  Google Scholar 

  52. I. Jimbo, Y. Chung, and A.W. Cramb: ISIJ Int., 1996, vol. 36, pp. S42–S45.

  53. K. Mukai, T. Matsushita, and S. Seetharaman: Scand. J. Metall., 2005, vol. 34, pp. 137–42.

    Article  CAS  Google Scholar 

  54. P.R. Scheller: Steel Res. Int., 2010, vol. 81, pp. 886–90.

    Article  CAS  Google Scholar 

  55. R. Roscoe: Br. J. Appl. Phys., 1952, vol. 3, pp. 267–69.

    Article  Google Scholar 

  56. S. Wright, L. Zhang, S. Sun, and S. Jahanshahi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 97–104.

    Article  CAS  Google Scholar 

  57. J.H. Park, H.S. Song, and D.J. Min: J. Kor. Inst. Metall. Mater., 2002, vol. 40, pp. 1111–17.

    CAS  Google Scholar 

  58. A.N. Grundy, H. Liu, I.H. Jung, S.A. Decterov, and A.D. Pelton: Int. J. Mater. Res., 2008, vol. 99, pp. 1185–94.

    Article  CAS  Google Scholar 

  59. A.N. Grundy, I.H. Jung, A.D. Pelton, and S.A. Decterov: Int. J. Mater. Res., 2008, vol. 99, pp. 1195–1209.

    Article  CAS  Google Scholar 

  60. R. Higbie: Trans. Inst. Chem. Eng., 1935, vol. 31, pp. 365–89.

    CAS  Google Scholar 

  61. F.D. Richardson: Physical Chemistry of Melts in Metallurgy, vol. 2, Academic Press, London, U.K., 1974.

    Google Scholar 

  62. S. Glasstone, K.J. Laidler, and H. Eyring: The Theory of Rate Processes, McGraw-Hill, New York, NY, 1941.

    Google Scholar 

  63. K.C. Mills: Diffusion Coefficients in Molten Slags in Slag Atlas, 2nd ed., Verlag Stahleisen VDEh, Dusseldorf, Germany, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Manuscript submitted November 16, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.J., Park, J.H. Interfacial Reaction Between CaO-SiO2-MgO-Al2O3 Flux and Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) Steel at 1873 K (1600 °C). Metall Mater Trans B 43, 875–886 (2012). https://doi.org/10.1007/s11663-012-9667-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9667-x

Keywords

Navigation