Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 1/2014

01.02.2014

Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and Interface Fluctuation in Aluminum Electrolytic Cell with Innovative Cathode

verfasst von: Qiang Wang, Baokuan Li, Zhu He, Naixiang Feng

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A three-dimensional (3D) transient mathematical model has been developed to understand the effect of innovative cathode on molten cryolite (bath)/molten aluminum (metal) interface fluctuation as well as energy-saving mechanism in aluminum electrolytic cell with innovative cathode. Based on the finite element method, the steady charge conservation law, Ohm’s law, and steady-state Maxwell’s equations were solved in order to investigate electric current field, magnetic field, and electromagnetic force (EMF) field. Then, an inhomogeneous multiphase flow model of three phases including bath, metal, and gas bubbles, based on the finite volume method, was implemented using the Euler/Euler approach to investigate melt motion and bath/metal interface fluctuation. EMF was incorporated into the momentum equations of bath and metal as a source term. Additionally, the interphase drag force was employed to consider different phase interactions. Thus, present work owns three main features: (1) magnetohydrodynamic multiphase flow are demonstrated in detail both in aluminum electrolytic cell with traditional cathode and innovative cathode; (2) bath/metal interface fluctuation due to different driving forces of gas bubbles, EMF, and the combined effect of the two driving forces is investigated, which is critical to the energy saving; and (3) the effect of innovative cathode on melt flow and motion of gas bubbles. A good agreement between the predicated results and measurement is obtained. The velocity difference leading to the melt oscillation decreases due to more uniform flow field. The average velocity of metal in the cell with innovative cathode decreases by approximately 33.98 pct. The gas bubbles in the cell with innovative cathode releases more quickly under the effect of protrusion on the cathode. The average bubble release frequency increases from 1.1 to 1.98 Hz. Hence, the voltage drop caused by gas bubbles would decrease significantly. In addition, the two large vortices are broken into many small vortices due to the protrusion. The final disappearance of the small vortices as a result of viscous dissipation is conducive to the suppression of bath/metal interface fluctuation. The average interface amplitude in the cell with innovative cathode reduces to 75.95 pct of that in the cell with traditional cathode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Das, G. Brooks, and Y. Morsi: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 243–53.CrossRef S. Das, G. Brooks, and Y. Morsi: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 243–53.CrossRef
2.
Zurück zum Zitat O. Zikanov, A. Thess, P. A. Davidson, and D. P. Ziegler: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1541–50.CrossRef O. Zikanov, A. Thess, P. A. Davidson, and D. P. Ziegler: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1541–50.CrossRef
3.
Zurück zum Zitat J. Descloux, M. Flueck, and M. V. Romerio: Light Metals, TMS, Warrendale, PA, 1994, pp. 275–81. J. Descloux, M. Flueck, and M. V. Romerio: Light Metals, TMS, Warrendale, PA, 1994, pp. 275–81.
4.
Zurück zum Zitat P. A. Davidson and R. I. Lindsay: J. Fluid Mech., 1998, vol. 263, pp. 342–59. P. A. Davidson and R. I. Lindsay: J. Fluid Mech., 1998, vol. 263, pp. 342–59.
5.
Zurück zum Zitat M. A. Doheim, A. M. El-kersh, and M. M. Ali: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 113–19.CrossRef M. A. Doheim, A. M. El-kersh, and M. M. Ali: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 113–19.CrossRef
6.
Zurück zum Zitat M. P. Taylor, W. D. Zhang, V. Wills, and S. Schmid: Chem. Eng. Res. Des., 1996, vol. 74(8), pp. 913–33.CrossRef M. P. Taylor, W. D. Zhang, V. Wills, and S. Schmid: Chem. Eng. Res. Des., 1996, vol. 74(8), pp. 913–33.CrossRef
7.
Zurück zum Zitat L. Walker: Light Metals: Proceeding of Sessions, TMS, Warrendale, PA, 1997, pp. 215–19. L. Walker: Light Metals: Proceeding of Sessions, TMS, Warrendale, PA, 1997, pp. 215–19.
8.
Zurück zum Zitat N. X. Feng: Low Energy Consumption Aluminum Reduction Cell with Novel Cathode, China, ZL 200710010523.4, 2008. N. X. Feng: Low Energy Consumption Aluminum Reduction Cell with Novel Cathode, China, ZL 200710010523.4, 2008.
9.
Zurück zum Zitat J. P. Peng: Industrial Test Study on Newly Structured Cathode Aluminum Reduction Cell, Shenyang, Northeastern University, 2009. J. P. Peng: Industrial Test Study on Newly Structured Cathode Aluminum Reduction Cell, Shenyang, Northeastern University, 2009.
10.
Zurück zum Zitat Z. Q. Wang: Industrial Experimental Study of Aluminum Reduction Cells Potline with a New Type of Cathode Design, Shenyang, Northeastern University, 2010. Z. Q. Wang: Industrial Experimental Study of Aluminum Reduction Cells Potline with a New Type of Cathode Design, Shenyang, Northeastern University, 2010.
11.
Zurück zum Zitat S. K. Banerjee and J. W. Evans: Metall. Trans. B, 1990, vol. 21B, pp. 59–69.CrossRef S. K. Banerjee and J. W. Evans: Metall. Trans. B, 1990, vol. 21B, pp. 59–69.CrossRef
12.
Zurück zum Zitat D.S. Severo, A.F. Schneider, E.C.V. Pinto, V. Gusberti, and V. Potocnik: in Light Metals 2005, H. Kvande, ed., TMS, Warrendale, PA, 2005, pp. 475–80. D.S. Severo, A.F. Schneider, E.C.V. Pinto, V. Gusberti, and V. Potocnik: in Light Metals 2005, H. Kvande, ed., TMS, Warrendale, PA, 2005, pp. 475–80.
13.
Zurück zum Zitat V. Potocnik and F. Laroche: Light Metals, TMS, Warrendale, PA, 2001, pp. 419–25. V. Potocnik and F. Laroche: Light Metals, TMS, Warrendale, PA, 2001, pp. 419–25.
14.
Zurück zum Zitat J. Xue and H. Oye: Light Metals, TMS, Warrendale, PA, 1995, pp. 265–70. J. Xue and H. Oye: Light Metals, TMS, Warrendale, PA, 1995, pp. 265–70.
15.
Zurück zum Zitat W. E. Haupin: JOM, 1971, vol. 23(7), pp. 41–44. W. E. Haupin: JOM, 1971, vol. 23(7), pp. 41–44.
16.
Zurück zum Zitat J.J.J. Chen, Z. Jianchao, Q. Kangxing, B.J. Welch, and M.P. Taylor: The Fifth Asian Congress of Fluid Mechanics, 1992, pp. 1173–76. J.J.J. Chen, Z. Jianchao, Q. Kangxing, B.J. Welch, and M.P. Taylor: The Fifth Asian Congress of Fluid Mechanics, 1992, pp. 1173–76.
17.
Zurück zum Zitat D.F. Che, J.J.J. Chen, and M.P. Taylor: Int. Conf on CFD in Mineral and Metal Processing and Power Generation, Institution of Chemical Engineers, 1991, pp. 25–29. D.F. Che, J.J.J. Chen, and M.P. Taylor: Int. Conf on CFD in Mineral and Metal Processing and Power Generation, Institution of Chemical Engineers, 1991, pp. 25–29.
18.
Zurück zum Zitat K.Y. Zhang, Y.Q. Feng, P. Schwarz, M. Cooksey, and Z.W. Wang: in Light Metals 2012, C.E. Suarez, ed., TMS, Warrendale, PA, 2012, pp. 881–86. K.Y. Zhang, Y.Q. Feng, P. Schwarz, M. Cooksey, and Z.W. Wang: in Light Metals 2012, C.E. Suarez, ed., TMS, Warrendale, PA, 2012, pp. 881–86.
19.
Zurück zum Zitat S. Fortin, M. Gerhardt, and A.J. Gesing: Light Metal, TMS, New York, NY, 1984, pp. 721–41. S. Fortin, M. Gerhardt, and A.J. Gesing: Light Metal, TMS, New York, NY, 1984, pp. 721–41.
20.
Zurück zum Zitat Y. F. Wang, L. F. Zhang, and X. J. Zuo: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1051–64.CrossRef Y. F. Wang, L. F. Zhang, and X. J. Zuo: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1051–64.CrossRef
21.
Zurück zum Zitat K. Vekony and L. Kiss: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1086–97.CrossRef K. Vekony and L. Kiss: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1086–97.CrossRef
22.
Zurück zum Zitat J. Zoric and A. Solheim: J. Appl. Electrochem., 2000, vol. 30, pp. 787–94.CrossRef J. Zoric and A. Solheim: J. Appl. Electrochem., 2000, vol. 30, pp. 787–94.CrossRef
23.
Zurück zum Zitat D.K. Ai: Light Metals, Proceedings of Sessions, AIME Annual Meeting, TMS, Warrendale, PA, 1985, pp. 593–607. D.K. Ai: Light Metals, Proceedings of Sessions, AIME Annual Meeting, TMS, Warrendale, PA, 1985, pp. 593–607.
24.
Zurück zum Zitat J. Li, Y. J. Xu, H. L. Zhang, and Y. Q. Lai: Int. J. Multiph. Flow, 2011, vol. 37, pp. 46–54.CrossRef J. Li, Y. J. Xu, H. L. Zhang, and Y. Q. Lai: Int. J. Multiph. Flow, 2011, vol. 37, pp. 46–54.CrossRef
25.
Zurück zum Zitat S. Das and G. Littlefair: in Light Metals 2012, C.E. Suarez, ed., TMS, Warrendale, PA, 2012, pp. 847–51. S. Das and G. Littlefair: in Light Metals 2012, C.E. Suarez, ed., TMS, Warrendale, PA, 2012, pp. 847–51.
26.
Zurück zum Zitat M. Hughes, K.A. Pericleous, and M. Cross: Appl. Math. Model., 1995, vol.19(12), pp. 713–23.CrossRef M. Hughes, K.A. Pericleous, and M. Cross: Appl. Math. Model., 1995, vol.19(12), pp. 713–23.CrossRef
27.
Zurück zum Zitat H. L. Zhang, J. Li, Z. G, Wang, Y. J. Xu, and Y. Q. Lai: JOM, 2010, vol. 62(11), pp. 26–31.CrossRef H. L. Zhang, J. Li, Z. G, Wang, Y. J. Xu, and Y. Q. Lai: JOM, 2010, vol. 62(11), pp. 26–31.CrossRef
28.
Zurück zum Zitat M. Segatz and D. Vogelsang: Light Metals, TMS, Warrendale, PA, 1991, pp. 393–98. M. Segatz and D. Vogelsang: Light Metals, TMS, Warrendale, PA, 1991, pp. 393–98.
29.
Zurück zum Zitat B.K. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1053–66.CrossRef B.K. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1053–66.CrossRef
30.
Zurück zum Zitat B. K. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2000, vol. 31B, pp.1491–1503.CrossRef B. K. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2000, vol. 31B, pp.1491–1503.CrossRef
31.
Zurück zum Zitat Z. He, B. K. Li, F. Wang, and N. X. Feng: J. Northeastern Univ., 2011, vol. 32(5), pp. 704–07. Z. He, B. K. Li, F. Wang, and N. X. Feng: J. Northeastern Univ., 2011, vol. 32(5), pp. 704–07.
32.
33.
Zurück zum Zitat L. Cassayre, T. A. Utigard, and S. Bouvet: JOM, 2002, vol. 54(5), pp. 41–45.CrossRef L. Cassayre, T. A. Utigard, and S. Bouvet: JOM, 2002, vol. 54(5), pp. 41–45.CrossRef
34.
Zurück zum Zitat M. Chiampi, M. Repetto, V. Chechurin, A. Kalimov, and L. Leboucher: Int. J. Comput. Math., 1999, vol. 18(3), pp. 528–38. M. Chiampi, M. Repetto, V. Chechurin, A. Kalimov, and L. Leboucher: Int. J. Comput. Math., 1999, vol. 18(3), pp. 528–38.
35.
Zurück zum Zitat I. Panaitescu, M. Repetto, L. Leboucher, and K. Pericleous: IEEE Trans. Magn., 2000, vol. 36(41), pp. 1305–08. I. Panaitescu, M. Repetto, L. Leboucher, and K. Pericleous: IEEE Trans. Magn., 2000, vol. 36(41), pp. 1305–08.
36.
Zurück zum Zitat H.H. Zhang, H.L. Zhang, J. Li, Y.J. Xu, S. Yang, and Y.Q. Lai: in Light Metals 2012, C.E. Suarez, ed., TMS, Warrendale, PA, 2012, pp. 869–73. H.H. Zhang, H.L. Zhang, J. Li, Y.J. Xu, S. Yang, and Y.Q. Lai: in Light Metals 2012, C.E. Suarez, ed., TMS, Warrendale, PA, 2012, pp. 869–73.
37.
Zurück zum Zitat H.J. Sun, O. Zikanov, and D.P. Ziegler: Fluid Dyn. Res., 2004, vol. 35, pp. 255–74.CrossRef H.J. Sun, O. Zikanov, and D.P. Ziegler: Fluid Dyn. Res., 2004, vol. 35, pp. 255–74.CrossRef
38.
Zurück zum Zitat J. Zhou, R.J. Adrian, and S. Balachandar: Phys. Fluids, 1996, vol. 8(1), pp. 288–90.CrossRef J. Zhou, R.J. Adrian, and S. Balachandar: Phys. Fluids, 1996, vol. 8(1), pp. 288–90.CrossRef
39.
Zurück zum Zitat J. Zhou, R.J. Adrian, S. Balachandar, and T.M. Kendally: J. Fluid Mech., 1999, vol. 387, pp. 353–96.CrossRef J. Zhou, R.J. Adrian, S. Balachandar, and T.M. Kendally: J. Fluid Mech., 1999, vol. 387, pp. 353–96.CrossRef
40.
Zurück zum Zitat A. Peron, L.I. Kiss, and S. Poncsak: J. Appl. Electrochem., 2007, vol. 37, pp. 303–10.CrossRef A. Peron, L.I. Kiss, and S. Poncsak: J. Appl. Electrochem., 2007, vol. 37, pp. 303–10.CrossRef
Metadaten
Titel
Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and Interface Fluctuation in Aluminum Electrolytic Cell with Innovative Cathode
verfasst von
Qiang Wang
Baokuan Li
Zhu He
Naixiang Feng
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 1/2014
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-013-0001-z

Weitere Artikel der Ausgabe 1/2014

Metallurgical and Materials Transactions B 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.