Skip to main content
Log in

Population Balance Modeling of Polydispersed Bubbly Flow in Continuous-Casting Using Multiple-Size-Group Approach

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A population balance model based on the multiple-size-group (MUSIG) approach has been developed to investigate the polydispersed bubbly flow inside the slab continuous-casting mold and bubble behavior including volume fraction, breakup, coalescence, and size distribution. The Eulerian–Eulerian approach is used to describe the equations of motion of the two-phase flow. All the non-drag forces (lift force, virtual mass force, wall lubrication force, and turbulent dispersion force) and drag force are incorporated in this model. Sato and Sekiguchi model is used to account for the bubble-induced turbulence. Luo and Svendsen model and Prince and Blanch model are used to describe the bubbles breakup and coalescence behavior, respectively. A 1/4th water model of the slab continuous-casting mold was applied to investigate the distribution and size of bubbles by injecting air through a circumferential inlet chamber which was made of the specially-coated samples of mullite porous brick, which is used for the actual upper nozzle. Against experimental data, numerical results showed good agreement for the gas volume fraction and local bubble Sauter mean diameter. The bubble Sauter mean diameter in the upper recirculation zone decreases with increasing water flow rate and increases with increasing gas flow rate. The distribution of bubble Sauter mean diameter along the width direction of the upper mold increases first, and then gradually decreases from the SEN to the narrow wall. Close agreements between the predictions and measurements demonstrate the capability of the MUSIG model in modeling bubbly flow inside the continuous-casting mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

B B :

Birth rate due to breakup into smaller bubbles

B C :

Birth rate due to coalescence of smaller bubbles

C D :

Drag coefficient

C L :

Lift force model constant

C VM :

Virtual mass force model constant

C WL :

Wall lubrication force model constant

C TD :

Turbulent dispersion model constant

C μ,BI :

Sato and Sekiguchi model constant

C μ,T :

Model constant

d :

Bubble diameter

d ij :

Equivalent bubble diameter

D B :

Death rate due to breakup into smaller bubbles

D C :

Death rate due to coalescence of smaller bubbles

D S :

Sauter mean bubble diameter

f BV :

Stochastic breakage volume fraction

f g,i :

Fraction of dispersed phase volume fraction in group-i

G k :

Rate of production of turbulent kinetic energy

F B :

Breakage calibration factor

F C :

Coalescence calibration factor

F h, F lg, F gl :

Interfacial forces between the two phases

\( F_{\lg }^{D} \) :

Drag force

\( F_{\lg }^{L} \) :

Lift force

\( F_{\lg }^{\text{VM}} \) :

Virtual mass force

\( F_{\lg }^{WL} \) :

Wall lubrication force

\( F_{\lg }^{\text{TD}} \) :

Turbulent dispersion force

\( \vec{g} \) :

Gravity acceleration vector

\( h_{0} \) :

Initial film thickness

\( h_{\text{f}} \) :

Critical film thickness

I:

Unity tensor

k :

Turbulent kinetic energy

n i, n j :

Number density of group-i/j bubbles

\( \vec{n}_{\omega } \) :

Outward vector normal to the wall

P :

Static pressure

P B :

Production rate due to breakup

P C :

Production rate due to coalescence

t :

Physical time

\( \vec{u} \) :

Velocity

\( \vec{u}_{t} \) :

Turbulence velocity

v :

Volume

\( \alpha \) :

Volume fraction

ρ :

Density

\( \varepsilon \) :

Turbulent kinetic energy dissipation

μ eff :

Effective viscosity

μ L :

Molecular viscosity

μ T :

Turbulence viscosity

μ BI :

Bubble-induced viscosity

σ :

Surface tension

σ t :

Turbulent Schmidt number

τ :

Stress

\( \xi \) :

Size ratio

Reb :

Bubble Reynolds number

\( \Omega \) :

Bubble breakup rate

\( \upsilon_{\text{t}} \) :

Turbulence kinematic viscosity

\( \chi_{ij} \) :

Turbulent random coalescence rate

\( \eta_{\text{jki}} \) :

Transfer coefficient between bubble groups arising from bubble breakup

\( \varPi_{\text{k}} ,\prod_{\varepsilon } \) :

Influence of dispersed phase on continuous phase

g :

Gas phase

i, j, k :

Index of bubble

l :

Liquid phase

s :

Sauter model

References

  1. G. Abbel, W. Damen, G. de Gendt, and W.Tiekink: ISIJ Int., 1996, vol. 36, pp.219-22.

    Article  Google Scholar 

  2. N. Kasai, Y. Watanabe, K. Kajiwara, and M. Toyoda: Tetsu-to-Hagané, 1997, vol. 83, pp. 24-29.

    Google Scholar 

  3. H. Bai and B.G. Thomas: Metall Mater. Trans., 2001, vol. 32B, pp. 1143-59.

    Article  Google Scholar 

  4. G.G. Lee, B.G. Thomas, and S.H. Kim: Met. Mater. Int., 2010, vol. 16, pp.501-06.

    Article  Google Scholar 

  5. A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643-65.

    Article  Google Scholar 

  6. Y.J. Kwon, J. Zhang, and H.G. Lee: ISIJ Int., 2006, vol. 46, pp. 257-66.

    Article  Google Scholar 

  7. B.G. Thomas, X. Huang and R. C. Suaaman: Metall. Mater. Trans., 1994, vol. 25B, pp. 527-47.

    Article  Google Scholar 

  8. R. Sanchez-Perez, R.D. Morales, L. Garcia-Demedices, L. Demedices-Garcia and M. Diaz-Cruz: Metall. Mater. Trans., 2004, vol. 35B, pp. 85-99.

    Article  Google Scholar 

  9. N. Kubo, T. Ishii, J. Kubota, M. Suzuki, and M. Nakata: CAMP ISIJ, 1997, vol. 10, pp. 758.

    Google Scholar 

  10. B.K. Li and F.Tsukihashi: ISIJ Int., 2005, vol. 45, pp. 30-36.

    Article  Google Scholar 

  11. D. Creech: Master’s Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1999.

  12. Q. Yuan, T. Shi, S. P. Vanka, and B.G. Thomas: Computational Modeling of Materials, Minerals and Metals Processing, Warrendale, PA, 2001, pp. 491-500.

    Google Scholar 

  13. Y. Miki, H. Ohno, Y. Kishimoto and S. Tanaka: Tetsu-to-Hagané, 2011, vol. 97, pp. 423-32.

    Article  Google Scholar 

  14. L. F. Zhang, S. B. Yang, K. K. Cai, J. Y. Li, X. G. Wang and B.G. Thomas: Metall. Mater. Trans., 2007, vol. 38B, pp. 63-82.

    Article  Google Scholar 

  15. Z.Q. Liu, B.K. Li, M.F. Jiang, and F.Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484-92.

    Article  Google Scholar 

  16. N. G. Deen, T. Solberg and B. H. Hjertager: Chem. Eng. Sci., 2001, vol. 56, pp. 6341-49.

    Article  Google Scholar 

  17. ANSYS CFX 14.0 User’s Manual, ANSYS Inc., 2012.

  18. X.Y. Duan, S.C.P. Cheung, G.H. Yeoh, J.Y. Tu, E. Krepper, and D. Lucas: Chem. Eng. Sci., 2011, vol. 66, pp. 872-83.

    Article  Google Scholar 

  19. S.C.P. Cheung, G.H. Yeoh, J.Y. Tu: Chem. Eng. Sci., 2007, vol. 62, pp. 4659-74.

    Article  Google Scholar 

  20. H. Luo and H. Svendsen: American Institute of Chemical Engineers, 1996, vol. 42, pp. 1225-33.

    Article  Google Scholar 

  21. M.J. Prince and H.W. Blanch: American Institute of Chemical Engineers, 1990, vol. 36, pp. 1485-99.

    Article  Google Scholar 

  22. Y. Sato and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp. 79-87.

    Article  Google Scholar 

  23. H.A. Jakobsen, B.H. Sannaes, S. Grevskott and H. F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052-74.

    Article  Google Scholar 

  24. S.E. Elgobashi and M.A. Rizk: Int. J. Multiphase Flow, 1989, vol. 15, pp.119-33.

    Article  Google Scholar 

  25. D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113-21.

    Article  Google Scholar 

  26. S.P. Antal, J.R. Lahey, and J.E. Flaherty: Int. J. Multiphase Flow, 1991, vol. 17, pp.635-52.

    Article  Google Scholar 

  27. E. Krepper, D. Lucas, and H. Prasser: Nucl. Eng. Des., 2004, vol. 235, pp. 597-611.

    Article  Google Scholar 

  28. A.D. Burns, T. Frank, I. Hamill, and J. Shi: Proceeding of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, 2004.

  29. S. Kumar and D. Ramkrishna: Chem. Eng. Sci., 1996, vol. 51, pp. 1311-32.

    Article  Google Scholar 

  30. Q. Wu, S. Kim, M. Ishii, and S.G. Beus: Int. J. Heat Mass Trans., 1998, vol.41, pp.1103-12.

    Article  Google Scholar 

  31. T. Hibiki and M. Ishii: Int. J. Heat Mass Trans., 2002, vol.45, pp.2351-72.

    Article  Google Scholar 

  32. W. Yao and C. Morel: Int. J. Heat Mass Trans., 2004, vol.47, pp.307-28.

    Article  Google Scholar 

  33. J.M. Martin-Valdepenas, M.A. Jimenez, R. Barbero, and F. Martin-Fuertes: Heat Mass Transfer, 2007, vol. 43, pp. 787-99.

    Article  Google Scholar 

  34. A.K. Chesters and G. Hoffman: Applied Scientific Research, 1982, vol. 38B, pp. 353-61.

    Article  Google Scholar 

  35. Z.Q. Liu, B.K. Li, M.F. Jiang, and F.Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314-23.

    Article  Google Scholar 

  36. C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor and S.R. Methuku: Comput. Electron. Agr., 2008, vol. 63, pp.168-82.

    Article  Google Scholar 

  37. K. Xiang, X.L. Zhu, C.X. Wang and B.N. Li: Comput. Biol. Med., 2013, vol.43, pp. 847-52.

    Article  Google Scholar 

  38. S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Process., 2007, vol. 46, pp. 742-56.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the National Natural Science Foundation of China for support of this research, Grant No. 51210007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baokuan Li.

Additional information

Manuscript submitted October 8, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, L., Qi, F. et al. Population Balance Modeling of Polydispersed Bubbly Flow in Continuous-Casting Using Multiple-Size-Group Approach. Metall Mater Trans B 46, 406–420 (2015). https://doi.org/10.1007/s11663-014-0192-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0192-y

Keywords

Navigation