Skip to main content
Log in

A Comprehensive Case Study of Macrosegregation in a Steel Ingot

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A case study is presented that examines the macrosegregation and grain structure present in a 12-tonne steel ingot, which was cast for experimental purposes. Details of the casting procedure were well documented and the resulting ingot was characterized using a number of techniques that measured chemical segregation, shrinkage, and porosity. The formation of the porosity and segregation patterns is discussed in reference to the particular grain structure observed in the ingot. It is hoped that this case study can be used as a tool for the validation of future macromodels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C. Maidorn and B. Blind: Nucl. Eng. Des., 1985, vol. 84, pp. 285–96.

    Article  Google Scholar 

  2. S.G. Druce: AERE Report R9581. September 1979.

  3. M. Bethmont, J.-M. Frund, B. Houssin, and P. Soulat: Effects of Radiation on Materials: 17th International Symposium, ASTM STP 1270, 1996, pp. 320–30.

  4. P. Soulat, B. Houssin, P. Bocquet, and M. Bethmont: Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review, ASTM STP 1170, Philadelphia, 1993, pp. 249–65.

  5. C. Beckermann: Int. Mater. Rev., 2002, vol. 47, pp. 243–61.

    Article  Google Scholar 

  6. V.R. Voller and F. Porte-Agel: J. Comput. Phys., 2002, vol. 179, pp. 698–703.

    Article  Google Scholar 

  7. E.J. Pickering: ISIJ, 2013, vol. 53, pp. 935–49.

    Article  Google Scholar 

  8. R. Tanzer, W. Schutzenhofer, G. Reiter, H.P. Fauland, L. Konozsy, A. Ishmurzin, M. Wu, and A. Ludwig: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 305–11.

    Article  Google Scholar 

  9. H. Combeau, M. Zaloznik, S. Hans, and P.E. Richy: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 289–304.

    Article  Google Scholar 

  10. J.S. Krafcik and J.A. Brooks: Developments in Materials Characterization Technologies, ASM International, Materials Park, 1996, pp. 111–8.

    Google Scholar 

  11. E.J. Pickering: Ph.D. Thesis, University of Cambridge, 2014.

  12. E.J. Pickering and M. Holland: Ironmak. Steelmak., 2014, vol. 41, pp. 493–9.

    Article  Google Scholar 

  13. Geotek Ltd, Daventry, UK. http://www.geotek.co.uk/.

  14. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds.: Binary Alloy Phase Diagrams, 3rd ed., ASM International, Materials Park, 1990.

  15. JMatPro software, version 6.2.1. http://www.sentesoftware.co.uk/jmatpro.aspx.

  16. ThermoCalc software, version 4.0, database TCFE6. http://www.thermocalc.com/start/.

  17. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications LTD, Aedermannsdorf, 1986.

    Google Scholar 

  18. M. Durand-Charre: Microstructure of Steels and Cast Irons, Springer, New York, 2004.

    Book  Google Scholar 

  19. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, 1974.

    Google Scholar 

  20. Heterogeneity Sub-Committee of the British Iron and Steel Institute: J. Iron Steel I., 1926, vol. 113, pp. 39–151.

    Google Scholar 

  21. R. Mehrabian, M. Keane, and M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 3238–41.

    Google Scholar 

  22. A. Sample and A. Hellawell: Metall. Trans. B, 1982, vol. 13B, pp. 495–501.

    Article  Google Scholar 

  23. S. Karagadde, L. Yuan, N. Shevchenko, S. Eckert, and P.D. Lee: Acta Mater., 2014, vol. 79, pp. 168–180, videos 1–4 in supplementary material.

  24. E.J. Pickering, S.S. Al-Bermani, and J. Talamantes-Silva: Mater. Sci. Technol., in press, DOI:10.1179/1743284714Y.0000000692.

Download references

Acknowledgments

This work was undertaken as part of a Project sponsored by Rolls-Royce Power Nuclear plc in collaboration with Sheffield Forgemasters International. The corresponding author would like to thank Prof. Grae Worster and Prof. Christoph Beckermann for very helpful discussions. Requests for access to the underlying research data should be directed to the corresponding author, and will be considered against commercial interests and data protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed J. Pickering.

Additional information

Manuscript submitted April 11, 2015.

Appendix

Appendix

Gray Cast Iron Properties

See Figures 20, 21, and 22.

Fig. 20
figure 20

Thermal conductivity variation with temperature for gray cast iron

Fig. 21
figure 21

Density variation with temperature for gray cast iron

Fig. 22
figure 22

Specific heat variation with temperature for gray cast iron

Ceramic Insulation Properties

Density = 1350 kg m−3 and Specific Heat = 1.0 kJ kg−1 K−1 (See Figure 23).

Fig. 23
figure 23

Thermal conductivity variation with temperature for ceramic insulation

Packing Sand Properties

Density = 1520 kg m−3 (See Figures 24 and 25).

Fig. 24
figure 24

Thermal conductivity variation with temperature for packing sand

Fig. 25
figure 25

Specific heat variation with temperature for packing sand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pickering, E.J., Chesman, C., Al-Bermani, S. et al. A Comprehensive Case Study of Macrosegregation in a Steel Ingot. Metall Mater Trans B 46, 1860–1874 (2015). https://doi.org/10.1007/s11663-015-0386-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0386-y

Keywords

Navigation