Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 1/2016

30.09.2015

A Structural Electrical Conductivity Model for Oxide Melts

verfasst von: Eric Thibodeau, In-Ho Jung

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A structural electrical conductivity model for oxide melts was developed based on the Nernst–Einstein relationship of ionic conductivity. In the description of ionic conductivity, the effective diffusivities of cations in oxide slags were described as a function of the polymerization of the melt. The polymerization of oxide melts was calculated from the Modified Quasichemical Model, taking into account the short-range ordering in slags. The parameters of this conductivity model were fixed to reproduce the electrical conductivity data in unary and binary melts, and the model can well predict the conductivity data in ternary and higher order system without any additional model parameters. The model is successfully applied to the CaO-MgO-MnO-PbO-Al2O3-SiO2 system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. L. Schiefelbein and D. R. Sadoway, “A high-accuracy, calibration-free technique for measuring the electrical conductivity of molten oxides,” Metallurgical and Materials Transactions B, vol. 28, pp. 1141-1149 (1997).CrossRef S. L. Schiefelbein and D. R. Sadoway, “A high-accuracy, calibration-free technique for measuring the electrical conductivity of molten oxides,” Metallurgical and Materials Transactions B, vol. 28, pp. 1141-1149 (1997).CrossRef
2.
Zurück zum Zitat J. O. M. Bockris, J. A. Kitchener, S. Ignatowicz, and J. W. Tomlinson, “Electric conductance in liquid silicates,” Transactions of the Faraday Society, vol. 48, pp. 75-91 (1952).CrossRef J. O. M. Bockris, J. A. Kitchener, S. Ignatowicz, and J. W. Tomlinson, “Electric conductance in liquid silicates,” Transactions of the Faraday Society, vol. 48, pp. 75-91 (1952).CrossRef
3.
Zurück zum Zitat J. O. M. Bockris, J. A. Kitchener, and A. E. Davies, “Electric transport in liquid silicates,” Transactions of the Faraday Society, vol. 48, pp. 536-548 (1952).CrossRef J. O. M. Bockris, J. A. Kitchener, and A. E. Davies, “Electric transport in liquid silicates,” Transactions of the Faraday Society, vol. 48, pp. 536-548 (1952).CrossRef
4.
Zurück zum Zitat K. S. Goto, M. Sasabe, and M. Kawakami, “Relation between tracer diffusivity and electrical conductivity on multi-component oxide slags at 900° to 1,600°C,” Transactions of the Iron and Steel Institute of Japan, vol. 17, pp. 212-214 (1977). K. S. Goto, M. Sasabe, and M. Kawakami, “Relation between tracer diffusivity and electrical conductivity on multi-component oxide slags at 900° to 1,600°C,” Transactions of the Iron and Steel Institute of Japan, vol. 17, pp. 212-214 (1977).
5.
Zurück zum Zitat G.-H. Zhang, Q.-G. Xue, L.-F. Li, F.-S. Li, and K.-C. Chou, “Studies on the electrical conductivities and diffusion coefficients of ions in CaO-Al2O3-SiO2 melt,” Beijing Keji Daxue Xuebao, vol. 34, pp. 1250-1255 (2012). G.-H. Zhang, Q.-G. Xue, L.-F. Li, F.-S. Li, and K.-C. Chou, “Studies on the electrical conductivities and diffusion coefficients of ions in CaO-Al2O3-SiO2 melt,” Beijing Keji Daxue Xuebao, vol. 34, pp. 1250-1255 (2012).
6.
Zurück zum Zitat H. Keller, K. Schwerdtfeger, and K. Hennesen, “Tracer diffusivity of Ca45 and electrical conductivity in CaO-SiO2 melts,” Metallurgical Transactions B, vol. 10, pp. 67-70 (1979).CrossRef H. Keller, K. Schwerdtfeger, and K. Hennesen, “Tracer diffusivity of Ca45 and electrical conductivity in CaO-SiO2 melts,” Metallurgical Transactions B, vol. 10, pp. 67-70 (1979).CrossRef
7.
Zurück zum Zitat Q. Jiao and N. J. Themelis, “Correlations of electrical conductivity to slag composition and temperature,” Metallurgical and Materials Transactions B, vol. 19, pp. 133-140 (1988).CrossRef Q. Jiao and N. J. Themelis, “Correlations of electrical conductivity to slag composition and temperature,” Metallurgical and Materials Transactions B, vol. 19, pp. 133-140 (1988).CrossRef
8.
Zurück zum Zitat M. Kato and S. Minowa, “Properties of slag at elevated temperature. III. Relation between the viscosity and electrical conductivity of molten slag,” Transactions of the Iron and Steel Institute of Japan, vol. 9, pp. 47-52 (1969). M. Kato and S. Minowa, “Properties of slag at elevated temperature. III. Relation between the viscosity and electrical conductivity of molten slag,” Transactions of the Iron and Steel Institute of Japan, vol. 9, pp. 47-52 (1969).
9.
Zurück zum Zitat G.-H. Zhang and K.-C. Chou, “Correlation between viscosity and electrical conductivity of aluminosilicate melts,” Metallurgical and Materials Transactions B, vol. 43, pp. 849-855 (2012).CrossRef G.-H. Zhang and K.-C. Chou, “Correlation between viscosity and electrical conductivity of aluminosilicate melts,” Metallurgical and Materials Transactions B, vol. 43, pp. 849-855 (2012).CrossRef
10.
Zurück zum Zitat Y. Waseda and J. M. Toguri, “The structure and properties of oxide melts: application of basic science to metallurgical processing.” World Scientific, Singapore; River Edge, NJ, pp. 142-144 (1998).CrossRef Y. Waseda and J. M. Toguri, “The structure and properties of oxide melts: application of basic science to metallurgical processing.” World Scientific, Singapore; River Edge, NJ, pp. 142-144 (1998).CrossRef
11.
Zurück zum Zitat O.V. Mazurin and O.A. Prokhorenko: in Properties Of Glass-Forming Melts. Taylor & Francis Group, London, 2005, pp. 295–337. O.V. Mazurin and O.A. Prokhorenko: in Properties Of Glass-Forming Melts. Taylor & Francis Group, London, 2005, pp. 295–337.
12.
Zurück zum Zitat A. Fluegel, D. A. Earl, and A. K. Varshneya, “Electrical resistivity of silicate glass melts calculation based on the SciGlass database,” Independently Peer Reviewed, vol. 1, pp. 1-36 (2007). A. Fluegel, D. A. Earl, and A. K. Varshneya, “Electrical resistivity of silicate glass melts calculation based on the SciGlass database,” Independently Peer Reviewed, vol. 1, pp. 1-36 (2007).
14.
Zurück zum Zitat R. Hundermark: The electrical conductivity of melter type slags. M.Sc. Thesis, University of Cape Town, 2003. R. Hundermark: The electrical conductivity of melter type slags. M.Sc. Thesis, University of Cape Town, 2003.
15.
Zurück zum Zitat I. B. Bobylev and V. N. Anfilogov, “Electric conductivity and structure of melts in the lead(II) oxide-silica system,” Fizika i Khimiya Stekla, vol. 5, pp. 213-218 (1979). I. B. Bobylev and V. N. Anfilogov, “Electric conductivity and structure of melts in the lead(II) oxide-silica system,” Fizika i Khimiya Stekla, vol. 5, pp. 213-218 (1979).
16.
Zurück zum Zitat A. D. Pelton and M. Blander, “Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - application to silicate slags,” Metallurgical and Materials Transactions B, vol. 17, pp. 805-815 (1986).CrossRef A. D. Pelton and M. Blander, “Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - application to silicate slags,” Metallurgical and Materials Transactions B, vol. 17, pp. 805-815 (1986).CrossRef
17.
Zurück zum Zitat C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen, “FactSage thermochemical software and databases — recent developments,” Calphad, vol. 33, pp. 295-311 (2009).CrossRef C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen, “FactSage thermochemical software and databases — recent developments,” Calphad, vol. 33, pp. 295-311 (2009).CrossRef
18.
Zurück zum Zitat J.-H. Park and P. C.-H. Rhee, “Ionic properties of oxygen in slag,” Journal of Non-Crystalline Solids, vol. 282, pp. 7-14 (2001).CrossRef J.-H. Park and P. C.-H. Rhee, “Ionic properties of oxygen in slag,” Journal of Non-Crystalline Solids, vol. 282, pp. 7-14 (2001).CrossRef
19.
Zurück zum Zitat J. A. Duffy, “Optical Basicity: A Practical Acid-Base Theory for Oxides and Oxyanions,” Journal of Chemical Education, vol. 73, pp. 1138 (1996).CrossRef J. A. Duffy, “Optical Basicity: A Practical Acid-Base Theory for Oxides and Oxyanions,” Journal of Chemical Education, vol. 73, pp. 1138 (1996).CrossRef
20.
Zurück zum Zitat W.-Y. Kim: Modelling Viscosity of Molten Slags and Glasses. Ph.D. Thesis, École Polytechnique de Montréal, 2011. W.-Y. Kim: Modelling Viscosity of Molten Slags and Glasses. Ph.D. Thesis, École Polytechnique de Montréal, 2011.
21.
Zurück zum Zitat E. Thibodeau, I.-H. Jung, and A. Gheribi: Metal. Mater. Trans. B, 2014, submitted. E. Thibodeau, I.-H. Jung, and A. Gheribi: Metal. Mater. Trans. B, 2014, submitted.
22.
Zurück zum Zitat K. C. Mills and B. J. Keene, “Physical properties of BOS slags,” International Materials Reviews, vol. 32, pp. 1-120 (1987).CrossRef K. C. Mills and B. J. Keene, “Physical properties of BOS slags,” International Materials Reviews, vol. 32, pp. 1-120 (1987).CrossRef
23.
Zurück zum Zitat K.C. Mills: in Slag Atlas, Woodhead Publishing Limited, 1995, pp. 557–590. K.C. Mills: in Slag Atlas, Woodhead Publishing Limited, 1995, pp. 557–590.
24.
Zurück zum Zitat R.A. Berryman: Electrical Conductivity in Liquid Calcium Silicates. Ph.D. Thesis, University of Toronto, 1989. R.A. Berryman: Electrical Conductivity in Liquid Calcium Silicates. Ph.D. Thesis, University of Toronto, 1989.
25.
Zurück zum Zitat D.J. Lindstrom, R.H. Lewis, and L.A. Haskin: Electrical Conductivity of Simulated Lunar Melts, Lunar and Planetary Science XV, 1984, pp. 479–480. D.J. Lindstrom, R.H. Lewis, and L.A. Haskin: Electrical Conductivity of Simulated Lunar Melts, Lunar and Planetary Science XV, 1984, pp. 479–480.
26.
Zurück zum Zitat K. Mori and Y. Matsushita, “The electrical conductivity of molten binary slags,” Tetsu to Hagane, vol. 38, pp. 283-288 (1952). K. Mori and Y. Matsushita, “The electrical conductivity of molten binary slags,” Tetsu to Hagane, vol. 38, pp. 283-288 (1952).
27.
Zurück zum Zitat K. Morinaga, Y. Suginohara, and T. Yanagase, “Electrical conductivity of CaO-SiO2-TiO2 melts,” Journal of the Japan Institute of Metals, vol. 38, pp. 658-662 (1974). K. Morinaga, Y. Suginohara, and T. Yanagase, “Electrical conductivity of CaO-SiO2-TiO2 melts,” Journal of the Japan Institute of Metals, vol. 38, pp. 658-662 (1974).
28.
Zurück zum Zitat M. Kawahara, Y. Ozima, K. Morinaga, and T. Yanagase, “The electrical conductivity of Na2O-SiO2-MgO and CaO-SiO2-MgO melts,” Journal of the Japan Institute of Metals, vol. 42, pp. 618-623 (1978). M. Kawahara, Y. Ozima, K. Morinaga, and T. Yanagase, “The electrical conductivity of Na2O-SiO2-MgO and CaO-SiO2-MgO melts,” Journal of the Japan Institute of Metals, vol. 42, pp. 618-623 (1978).
29.
Zurück zum Zitat S. Sumita, H. Takano, K. Morinaga, and T. Yanagase, “Viscosity and Electrical Conductivity of Na2O-SiO2-ZnO and CaO-SiO2-ZnO Melts,” Journal of the Japan Institute of Metals, vol. 46, pp. 280-285 (1982). S. Sumita, H. Takano, K. Morinaga, and T. Yanagase, “Viscosity and Electrical Conductivity of Na2O-SiO2-ZnO and CaO-SiO2-ZnO Melts,” Journal of the Japan Institute of Metals, vol. 46, pp. 280-285 (1982).
30.
Zurück zum Zitat T. Licko and V. Danek, “Electrical conductivity of melts in the calcium oxide-magnesium oxide-silicon dioxide system,” Silikaty (Prague), vol. 27, pp. 55-62 (1983). T. Licko and V. Danek, “Electrical conductivity of melts in the calcium oxide-magnesium oxide-silicon dioxide system,” Silikaty (Prague), vol. 27, pp. 55-62 (1983).
31.
Zurück zum Zitat y. Gruener, D. De Sousa Meneses, P. Odier, and J. P. Loup, “Influence of the network on conductivity in ternary CaO–Al2O3–SiO2 glasses and melts,” Journal of Non-Crystalline Solids, vol. 281, pp. 117-124 (2001). y. Gruener, D. De Sousa Meneses, P. Odier, and J. P. Loup, “Influence of the network on conductivity in ternary CaO–Al2O3–SiO2 glasses and melts,” Journal of Non-Crystalline Solids, vol. 281, pp. 117-124 (2001).
32.
Zurück zum Zitat M. Malki and P. Echegut, “Ionic conductivity in glasses and melts (up to 1950 K): Application to the CaO-SiO2 system,” International Journal of Thermophysics, vol. 25, pp. 1495-1503 (2004).CrossRef M. Malki and P. Echegut, “Ionic conductivity in glasses and melts (up to 1950 K): Application to the CaO-SiO2 system,” International Journal of Thermophysics, vol. 25, pp. 1495-1503 (2004).CrossRef
33.
Zurück zum Zitat J.O.M. Bockris, J.A. Kitchener, S. Ignatowicz, and J.W. Tomlinson: Electrical conductivity of silicate melts; systems containing calcium, manganese, and aluminum, Discuss. Faraday Soc., 1948, pp. 265–281. J.O.M. Bockris, J.A. Kitchener, S. Ignatowicz, and J.W. Tomlinson: Electrical conductivity of silicate melts; systems containing calcium, manganese, and aluminum, Discuss. Faraday Soc., 1948, pp. 265–281.
34.
Zurück zum Zitat G.I. Zhmoidin: Electrical Conductivity and Structural Features of Aluminosilicate Melts, Svoistva i Struktura Shlakovykh Rasplavov, 1970, pp. 101–107. G.I. Zhmoidin: Electrical Conductivity and Structural Features of Aluminosilicate Melts, Svoistva i Struktura Shlakovykh Rasplavov, 1970, pp. 101–107.
35.
Zurück zum Zitat S.A. Kalyadina: Issledovanie Vyazkosti i Udelnoi Elektroprovodnosti Fosfatno–Kremnistykh Rasplavov, Thesis, 1977. S.A. Kalyadina: Issledovanie Vyazkosti i Udelnoi Elektroprovodnosti Fosfatno–Kremnistykh Rasplavov, Thesis, 1977.
36.
Zurück zum Zitat T. Hoster and J. Poetschke, “Electrical conductivity of ferrous oxide-containing calcium oxide-aluminum oxide-silicon dioxide slags with basicities ≤1.5 at 1450 to 1650° C,” Archiv fuer das Eisenhuettenwesen, vol. 54, pp. 389-394 (1983). T. Hoster and J. Poetschke, “Electrical conductivity of ferrous oxide-containing calcium oxide-aluminum oxide-silicon dioxide slags with basicities ≤1.5 at 1450 to 1650° C,” Archiv fuer das Eisenhuettenwesen, vol. 54, pp. 389-394 (1983).
37.
Zurück zum Zitat K.S. Evstropiev: in Fiziko-Khimicheskie Svoistva Troinoi Sistemy Na 2 O-PbO-SiO 2 , Moskva, 1949, p. 83. K.S. Evstropiev: in Fiziko-Khimicheskie Svoistva Troinoi Sistemy Na 2 O-PbO-SiO 2 , Moskva, 1949, p. 83.
38.
Zurück zum Zitat A. K. Schellinger and R. P. Olsen, “The relationship between electrical conductivity and composition of molten lead silicate slags,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 1, pp. 984-986 (1949). A. K. Schellinger and R. P. Olsen, “The relationship between electrical conductivity and composition of molten lead silicate slags,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 1, pp. 984-986 (1949).
39.
Zurück zum Zitat J.O.M. Bockris and G. W. Mellors, “Electric conductance in liquid lead silicates and borates,” The Journal of Physical Chemistry, vol. 60, pp. 1321-1328 (1956).CrossRef J.O.M. Bockris and G. W. Mellors, “Electric conductance in liquid lead silicates and borates,” The Journal of Physical Chemistry, vol. 60, pp. 1321-1328 (1956).CrossRef
40.
Zurück zum Zitat H. Ito and T. Yanagase, “Studies on lead silicate melts,” Transactions of the Japan Insitute of Melts, vol. 1, pp. 115-120 (1960).CrossRef H. Ito and T. Yanagase, “Studies on lead silicate melts,” Transactions of the Japan Insitute of Melts, vol. 1, pp. 115-120 (1960).CrossRef
41.
Zurück zum Zitat . T. Ejima, Y. Watanabe, and M. Kameda, “Electric conductance in molten lead silicates. I. Electric conductance in the molten PbO-SiO2 binary system,” Nippon Kinzoku Gakkaishi, vol. 32, pp. 1250-1256 (1968). . T. Ejima, Y. Watanabe, and M. Kameda, “Electric conductance in molten lead silicates. I. Electric conductance in the molten PbO-SiO2 binary system,” Nippon Kinzoku Gakkaishi, vol. 32, pp. 1250-1256 (1968).
42.
Zurück zum Zitat K. A. Kostanyan and O. K. Geokchyan, “Electrical conductivity of molten lead silicate and lead borate glasses,” Armyanskii Khimicheskii Zhurnal, vol. 21, pp. 230-240 (1968). K. A. Kostanyan and O. K. Geokchyan, “Electrical conductivity of molten lead silicate and lead borate glasses,” Armyanskii Khimicheskii Zhurnal, vol. 21, pp. 230-240 (1968).
43.
Zurück zum Zitat M. Ashizuka and M. Ohtani, “Measurement of the electrical conductivity of silicate melts containing lead oxide and sodium oxide,” Nippon Kinzoku Gakkaishi, vol. 33, pp. 498-503 (1969). M. Ashizuka and M. Ohtani, “Measurement of the electrical conductivity of silicate melts containing lead oxide and sodium oxide,” Nippon Kinzoku Gakkaishi, vol. 33, pp. 498-503 (1969).
44.
Zurück zum Zitat H. Saito, K. Goto, and M. Someno, “Electric conductivity of liquid lead oxide-silicon dioxide, lead oxide-germanium lead oxide-boron trioxide, and lead oxide-silicon dioxide-germanium dioxide systems,” Tetsu to Hagane, vol. 55, pp. 539-549 (1969). H. Saito, K. Goto, and M. Someno, “Electric conductivity of liquid lead oxide-silicon dioxide, lead oxide-germanium lead oxide-boron trioxide, and lead oxide-silicon dioxide-germanium dioxide systems,” Tetsu to Hagane, vol. 55, pp. 539-549 (1969).
45.
Zurück zum Zitat R.S. Saringyulyan and K.A. Kostanyan: Role of Viscosity During a Study of the Electrical Conductivity of Potassium Oxide-Lead Monoxide-Silicon Dioxide-System Glasses, pp. 289–291. R.S. Saringyulyan and K.A. Kostanyan: Role of Viscosity During a Study of the Electrical Conductivity of Potassium Oxide-Lead Monoxide-Silicon Dioxide-System Glasses, pp. 289–291.
46.
Zurück zum Zitat M. Kawahara, K.-j. Morinaga, and T. Yanagase, “The behavior of MgO and NiO in molten PbO-SiO2 system,” Journal of the Japan Institute of Metals, vol. 43, pp. 309-315 (1979). M. Kawahara, K.-j. Morinaga, and T. Yanagase, “The behavior of MgO and NiO in molten PbO-SiO2 system,” Journal of the Japan Institute of Metals, vol. 43, pp. 309-315 (1979).
47.
Zurück zum Zitat L. Segers, A. Fontana, and R. Winand, “Conductivites electriques de melanges de silicates fondus du systeme CaO-SiO2-MnO,” Electrochimica Acta, vol. 23, pp. 1281-1286 (1978).CrossRef L. Segers, A. Fontana, and R. Winand, “Conductivites electriques de melanges de silicates fondus du systeme CaO-SiO2-MnO,” Electrochimica Acta, vol. 23, pp. 1281-1286 (1978).CrossRef
48.
Zurück zum Zitat N. Shinozaki, K. Mizoguchi, and Y. Suginohara, “Electrical conductivity of manganese(II) oxide-silicon(IV) oxide-titanium(IV) oxide,” Nippon Kinzoku Gakkaishi, vol. 42, pp. 162-168 (1978). N. Shinozaki, K. Mizoguchi, and Y. Suginohara, “Electrical conductivity of manganese(II) oxide-silicon(IV) oxide-titanium(IV) oxide,” Nippon Kinzoku Gakkaishi, vol. 42, pp. 162-168 (1978).
49.
Zurück zum Zitat S. G. Lor’yan, R. S. Saringyulyan, and K. A. Kostanyan, “Electric conductivity of high-silica glasses of the alumina-boron oxide-silica system in a broad range of temperatures,” Fizika i Khimiya Stekla, vol. 3, pp. 612-616 (1977). S. G. Lor’yan, R. S. Saringyulyan, and K. A. Kostanyan, “Electric conductivity of high-silica glasses of the alumina-boron oxide-silica system in a broad range of temperatures,” Fizika i Khimiya Stekla, vol. 3, pp. 612-616 (1977).
50.
Zurück zum Zitat K. Mori and Y. Matsushita, “Electrical conductivity of molten CaO-Al2O3 slag,” Tetsu to Hagane, vol. 38, pp. 531-536 (1952). K. Mori and Y. Matsushita, “Electrical conductivity of molten CaO-Al2O3 slag,” Tetsu to Hagane, vol. 38, pp. 531-536 (1952).
51.
Zurück zum Zitat B. Sikora and M. Zielinski, “Density surface tension, viscosity, and electric conductivity of fused calcium oxide-alumina-calcium fluoride systems,” Hutnik, vol. 41, pp. 433-437 (1974). B. Sikora and M. Zielinski, “Density surface tension, viscosity, and electric conductivity of fused calcium oxide-alumina-calcium fluoride systems,” Hutnik, vol. 41, pp. 433-437 (1974).
52.
Zurück zum Zitat L. Segers, A. Fontana, and R. Winand, “Electrical conductivity of molten slags of the system silicon dioxide-aluminum oxide-manganese monoxide-calcium oxide-magnesium oxide,” Canadian Metallurgical Quarterly, vol. 22, pp. 429-435 (1983).CrossRef L. Segers, A. Fontana, and R. Winand, “Electrical conductivity of molten slags of the system silicon dioxide-aluminum oxide-manganese monoxide-calcium oxide-magnesium oxide,” Canadian Metallurgical Quarterly, vol. 22, pp. 429-435 (1983).CrossRef
53.
Zurück zum Zitat Y. Suginohara, T. Yanagase, and H. Ito, “The effects of oxide additions on the structure-sensitive properties of lead silicate melts,” Transactions of the Japan Institute of Metals, vol. 3, pp. 227-233 (1962).CrossRef Y. Suginohara, T. Yanagase, and H. Ito, “The effects of oxide additions on the structure-sensitive properties of lead silicate melts,” Transactions of the Japan Institute of Metals, vol. 3, pp. 227-233 (1962).CrossRef
54.
Zurück zum Zitat R.A. Lyutikov and L.M. Tsylev: Izvestiya Akademii Nauk SSSR, Metallurgiya i Gornoe Delo, 1963, pp. 41–52. R.A. Lyutikov and L.M. Tsylev: Izvestiya Akademii Nauk SSSR, Metallurgiya i Gornoe Delo, 1963, pp. 41–52.
55.
Zurück zum Zitat G.H. Johnston: Nat. Inst. Metal. (S. Afr.), 1975, vol. 1547, p. 29. G.H. Johnston: Nat. Inst. Metal. (S. Afr.), 1975, vol. 1547, p. 29.
56.
Zurück zum Zitat L. Segers, A. Fontana, and R. Winand, “Poids specifiques et volumes molaires de melanges d’oxydes fondus du systeme CaO-SiO2-MnO,” Electrochimica Acta, vol. 23, pp. 1275-1280 (1978).CrossRef L. Segers, A. Fontana, and R. Winand, “Poids specifiques et volumes molaires de melanges d’oxydes fondus du systeme CaO-SiO2-MnO,” Electrochimica Acta, vol. 23, pp. 1275-1280 (1978).CrossRef
57.
Zurück zum Zitat A. E. Martin and G. Derge, “The electrical conductivity of molten blast-furnace slags,” Technical Publications - American Institute of Mining and Metallurgical Engineers, vol. 1569, pp. 104-115 (1943). A. E. Martin and G. Derge, “The electrical conductivity of molten blast-furnace slags,” Technical Publications - American Institute of Mining and Metallurgical Engineers, vol. 1569, pp. 104-115 (1943).
58.
Zurück zum Zitat R. Kammel and H. Winterhager, “Structure and properties of metallurgical slags. V. Density determinations and electrical conductivity measurements on melts in the system lime-alumina-silica,” Zeitschrift fuer Erzbergbau und Metallhuettenwesen, vol. 18, pp. 9-17 (1965). R. Kammel and H. Winterhager, “Structure and properties of metallurgical slags. V. Density determinations and electrical conductivity measurements on melts in the system lime-alumina-silica,” Zeitschrift fuer Erzbergbau und Metallhuettenwesen, vol. 18, pp. 9-17 (1965).
59.
Zurück zum Zitat H. G. L. K. R. Winterhager, “Untersuchungen über die Dichte und die elektrische Leitfähigkeit von Schmelzen der Systeme CaO-Al2O3-SiO2 und CaO-MgO-Al2O3-SiO2.” Westdeutscher Verlag: Köln u. Opladen, (1966). H. G. L. K. R. Winterhager, “Untersuchungen über die Dichte und die elektrische Leitfähigkeit von Schmelzen der Systeme CaO-Al2O3-SiO2 und CaO-MgO-Al2O3-SiO2. Westdeutscher Verlag: Köln u. Opladen, (1966).
60.
Zurück zum Zitat M. Kato and S. Minowa, “Properties of slag at elevated temperature. II. Electrical conductivity measurements of slag at elevated temperature,” Transactions of the Iron and Steel Institute of Japan, vol. 9, pp. 39-46 (1969). M. Kato and S. Minowa, “Properties of slag at elevated temperature. II. Electrical conductivity measurements of slag at elevated temperature,” Transactions of the Iron and Steel Institute of Japan, vol. 9, pp. 39-46 (1969).
61.
Zurück zum Zitat S. V. Nesterenko and V. M. Khomenko, “Effect of alkali on the surface tension and electrical conductivity of calcium oxide-magnesium oxide-silicon dioxide slags containing 5% aluminum oxide,” Izvestiya Akademii Nauk SSSR, Metally, vol. 1, pp. 44-48 (1985). S. V. Nesterenko and V. M. Khomenko, “Effect of alkali on the surface tension and electrical conductivity of calcium oxide-magnesium oxide-silicon dioxide slags containing 5% aluminum oxide,” Izvestiya Akademii Nauk SSSR, Metally, vol. 1, pp. 44-48 (1985).
62.
Zurück zum Zitat S. B. Sarkar, “Electrical conductivity of molten high-alumina blast furnace slags,” ISIJ International, vol. 29, pp. 348-351 (1989).CrossRef S. B. Sarkar, “Electrical conductivity of molten high-alumina blast furnace slags,” ISIJ International, vol. 29, pp. 348-351 (1989).CrossRef
63.
Zurück zum Zitat T. A. Chubinidze and M. A. Kekelidze, “Effect of magnesium oxide on the viscosity and specific electrical conductivity of melts in the magnesium oxide-calcium oxide-silicon dioxide system at 10% aluminum oxide,” Soobshcheniya Akademii Nauk Gruzinskoi SSR, vol. 44, pp. 187-194 (1966). T. A. Chubinidze and M. A. Kekelidze, “Effect of magnesium oxide on the viscosity and specific electrical conductivity of melts in the magnesium oxide-calcium oxide-silicon dioxide system at 10% aluminum oxide,” Soobshcheniya Akademii Nauk Gruzinskoi SSR, vol. 44, pp. 187-194 (1966).
64.
Zurück zum Zitat T. A. Chubinidze and M. A. Kekelidze, “Viscosity and electrical conductivity of melts in the manganous oxide calcium oxide-silica system at 10% alumina,” Soobshcheniya Akademii Nauk Gruzinskoi SSR, vol. 43, pp. 667-674 (1966). T. A. Chubinidze and M. A. Kekelidze, “Viscosity and electrical conductivity of melts in the manganous oxide calcium oxide-silica system at 10% alumina,” Soobshcheniya Akademii Nauk Gruzinskoi SSR, vol. 43, pp. 667-674 (1966).
65.
Zurück zum Zitat L.C. Woollacott: Natl. Inst. Metal. (S. Afr.), 1975, vol. 1687, p. 10. L.C. Woollacott: Natl. Inst. Metal. (S. Afr.), 1975, vol. 1687, p. 10.
66.
Zurück zum Zitat C.-Y. Sun and X.-M. Guo, “Electrical conductivity of MO(MO=FeO, NiO)-containing CaO-MgO-SiO2-Al2O3 slag with low basicity,” Transactions of Nonferrous Metals Society of China, vol. 21, pp. 1648-1654 (2011).CrossRef C.-Y. Sun and X.-M. Guo, “Electrical conductivity of MO(MO=FeO, NiO)-containing CaO-MgO-SiO2-Al2O3 slag with low basicity,” Transactions of Nonferrous Metals Society of China, vol. 21, pp. 1648-1654 (2011).CrossRef
67.
Zurück zum Zitat A. E. van Arkel, E. A. Flood, and N. F. H. Bright, “The electrical conductivity of molten oxides,” Canadian Journal of Chemistry, vol. 31, pp. 1009-1019 (1953).CrossRef A. E. van Arkel, E. A. Flood, and N. F. H. Bright, “The electrical conductivity of molten oxides,” Canadian Journal of Chemistry, vol. 31, pp. 1009-1019 (1953).CrossRef
68.
Zurück zum Zitat H. Fay, “The electrical conductivity of liquid Al2O3 (molten corundum and ruby),” The Journal of Physical Chemistry, vol. 70, pp. 890-893 (1966).CrossRef H. Fay, “The electrical conductivity of liquid Al2O3 (molten corundum and ruby),” The Journal of Physical Chemistry, vol. 70, pp. 890-893 (1966).CrossRef
69.
Zurück zum Zitat A. N. Shatunov, A. I. Maksimov, A. Y. Pechenkov, and I. V. Poznyak, “Method of electrical resistivity measurement for high-temperature melts,” Inorganic Materials, vol. 47, pp. 1579-1583 (2011).CrossRef A. N. Shatunov, A. I. Maksimov, A. Y. Pechenkov, and I. V. Poznyak, “Method of electrical resistivity measurement for high-temperature melts,” Inorganic Materials, vol. 47, pp. 1579-1583 (2011).CrossRef
70.
Zurück zum Zitat V. I. Aleksandrov, V. V. Osiko, and V. M. Tatarintsev, “Electrical conductivity of aluminum oxide in the molten state,” Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, vol. 8, pp. 956-957 (1972). V. I. Aleksandrov, V. V. Osiko, and V. M. Tatarintsev, “Electrical conductivity of aluminum oxide in the molten state,” Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, vol. 8, pp. 956-957 (1972).
71.
Zurück zum Zitat E. E. Shpil’rain, D. N. Kagan, L. S. Barkhatov, and L. I. Zhmakin, “Experimental study of the electric conductivity of molten aluminum oxide at temperatures to 3000 K,” Teplofizika Vysokikh Temperatur, vol. 14, pp. 948-952 (1976). E. E. Shpil’rain, D. N. Kagan, L. S. Barkhatov, and L. I. Zhmakin, “Experimental study of the electric conductivity of molten aluminum oxide at temperatures to 3000 K,” Teplofizika Vysokikh Temperatur, vol. 14, pp. 948-952 (1976).
72.
Zurück zum Zitat V. P. Elyutin, B. S. Mitin, and Y. A. Nagibin, “Electrical conductivity of molten aluminum oxide,” Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, vol. 7, pp. 880-881 (1971). V. P. Elyutin, B. S. Mitin, and Y. A. Nagibin, “Electrical conductivity of molten aluminum oxide,” Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, vol. 7, pp. 880-881 (1971).
73.
Zurück zum Zitat E. E. Shpil’rain, K. A. Yakimovich, and A. F. Tsitsarkin, “Experimental study of the density of liquid alumina up to 2750.deg,” High Temperatures - High Pressures, vol. 5, pp. 191-198 (1973). E. E. Shpil’rain, K. A. Yakimovich, and A. F. Tsitsarkin, “Experimental study of the density of liquid alumina up to 2750.deg,” High Temperatures - High Pressures, vol. 5, pp. 191-198 (1973).
74.
Zurück zum Zitat M. B. Panish, “The Electrical Conductivity of Molten Silica,” The Journal of Physical Chemistry, vol. 63, pp. 1337-1338 (1959).CrossRef M. B. Panish, “The Electrical Conductivity of Molten Silica,” The Journal of Physical Chemistry, vol. 63, pp. 1337-1338 (1959).CrossRef
75.
Zurück zum Zitat R. D. Veltri, “The electrical resistivity of solid and molten fused silica in the temperature range 1000-2480°C,” Physics and Chemistry of Glasses, vol. 4, pp. 221-228 (1963). R. D. Veltri, “The electrical resistivity of solid and molten fused silica in the temperature range 1000-2480°C,” Physics and Chemistry of Glasses, vol. 4, pp. 221-228 (1963).
76.
Zurück zum Zitat V. A. Lapin and Y. A. Polonskii, “Electric resistance of quartz glass in the 400-2200°C temperature range,” Trudy, Vsesoyuznyi Gosudarstvennyi Institut Nauchno-Issledovatel’skikh i Proektnykh Rabot Ogneupornoi Promyshlennosti, vol. 4, pp. 79-91 (1975). V. A. Lapin and Y. A. Polonskii, “Electric resistance of quartz glass in the 400-2200°C temperature range,” Trudy, Vsesoyuznyi Gosudarstvennyi Institut Nauchno-Issledovatel’skikh i Proektnykh Rabot Ogneupornoi Promyshlennosti, vol. 4, pp. 79-91 (1975).
77.
Zurück zum Zitat H. E. Seemann, “The thermal and electrical conductivity of fused quartz as a function of temperature,” Physical Review, vol. 31, pp. 119-129 (1928).CrossRef H. E. Seemann, “The thermal and electrical conductivity of fused quartz as a function of temperature,” Physical Review, vol. 31, pp. 119-129 (1928).CrossRef
78.
Zurück zum Zitat J. Cohen, “Electrical Conductivity of Fused Quartz,” Journal of Applied Physics, vol. 28, pp. 795-800 (1957).CrossRef J. Cohen, “Electrical Conductivity of Fused Quartz,” Journal of Applied Physics, vol. 28, pp. 795-800 (1957).CrossRef
79.
Zurück zum Zitat L. Segers, A. Fontana, and R. Winand, “Conductivite electrique des silicates fondus methode de mesure,” Silicates Industriels, vol. 12, pp. 341-345 (1975). L. Segers, A. Fontana, and R. Winand, “Conductivite electrique des silicates fondus methode de mesure,” Silicates Industriels, vol. 12, pp. 341-345 (1975).
80.
Zurück zum Zitat K.A. Kostanyan and R.S. Saringyulyan: in Elektrokhimiya i Rasplavy, 1974, pp. 193–201. K.A. Kostanyan and R.S. Saringyulyan: in Elektrokhimiya i Rasplavy, 1974, pp. 193–201.
81.
Zurück zum Zitat K. Ogino and S. Hara, “Density, surface tension and electrical conductivity of calcium fluoride based fluxes for electroslag remelting,” Tetsu to Hagane, vol. 63, pp. 2141-2151 (1977). K. Ogino and S. Hara, “Density, surface tension and electrical conductivity of calcium fluoride based fluxes for electroslag remelting,” Tetsu to Hagane, vol. 63, pp. 2141-2151 (1977).
82.
Zurück zum Zitat T. Ejima, Y. Watanabe, and M. Kameda, “Electric conductance in molten lead silicates. II. Electric conductance in the molten PbO-SiO2-MO ternary system,” Nippon Kinzoku Gakkaishi, vol. 32, pp. 1256-1262 (1968). T. Ejima, Y. Watanabe, and M. Kameda, “Electric conductance in molten lead silicates. II. Electric conductance in the molten PbO-SiO2-MO ternary system,” Nippon Kinzoku Gakkaishi, vol. 32, pp. 1256-1262 (1968).
83.
Zurück zum Zitat M. S. Rennie, D. D. Howat, and P. R. Jochens, “Effects of chromium oxide, iron oxide, and calcium oxide on the liquidus temperatures, viscosities, and electrical conductivities of slags in the system magnesium oxide-aluminum oxide-silicon monoxide,” Journal of the South African Institute of Mining and Metallurgy, vol. 73, pp. 1-9 (1972). M. S. Rennie, D. D. Howat, and P. R. Jochens, “Effects of chromium oxide, iron oxide, and calcium oxide on the liquidus temperatures, viscosities, and electrical conductivities of slags in the system magnesium oxide-aluminum oxide-silicon monoxide,” Journal of the South African Institute of Mining and Metallurgy, vol. 73, pp. 1-9 (1972).
Metadaten
Titel
A Structural Electrical Conductivity Model for Oxide Melts
verfasst von
Eric Thibodeau
In-Ho Jung
Publikationsdatum
30.09.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 1/2016
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-015-0458-z

Weitere Artikel der Ausgabe 1/2016

Metallurgical and Materials Transactions B 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.