Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 2/2016

01.02.2016

Effect of Slag on Titanium, Silicon, and Aluminum Contents in Superalloy During Electroslag Remelting

verfasst von: Zhou-Hua Jiang, Dong Hou, Yan-Wu Dong, Yu-Long Cao, Hai-Bo Cao, Wei Gong

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many factors influence the chemical composition in electroslag remelting (ESR) steel, including atmosphere in crucible, melting rate, slag composition, deoxidation, and so on. Fluoride-based slag, which is exposed to liquid metal directly, influences the chemical composition of ESR ingots to a large extent. The present paper focuses on the effect of slag on the titanium, silicon, and aluminum contents in ingots based on the interaction of the slag and metal. In present work, superalloy of GH8825 and several slags containing different CaO contents have been employed for investigating the effect of slag on titanium, silicon, and aluminum contents in an electrical resistance furnace under argon atmosphere. Results indicate that the higher CaO content in slag has better capacity for avoiding loss of titanium caused by the reaction of titanium with silica in slag, especially in case of remelting superalloy with high titanium and low silicon content. The CaO has a great effect on the activities of TiO2, SiO2, and Al2O3. Thermodynamic analysis is applied to investigate the CaO behavior. Based on the ion and molecule coexistence theory of slag, activity model is established to calculate the activities of components containing titanium, silicon, and aluminum elements in a six-component slag consisting of CaO-CaF2-Al2O3-SiO2-TiO2-MgO. The components containing titanium, silicon, and aluminum in slag are mainly CaO·TiO2, 2CaO·SiO2, CaO·SiO2, CaO·Al2O3, and MgO·Al2O3. With the increase of CaO mass fraction in slag, the activity coefficient of SiO2 decreases significantly, whereas slightly change happens for Al2O3. As a result, the \( \lg ({{\gamma_{{{\text{SiO}}_{2} }} } \mathord{\left/ {\vphantom {{\gamma_{{{\text{SiO}}_{2} }} } {\gamma_{{{\text{TiO}}_{2} }} }}} \right. \kern-0pt} {\gamma_{{{\text{TiO}}_{2} }} }}) \) decreases with increasing CaO content, which is better for preventing loss of titanium caused by the reaction of titanium with silica in slag. The slag with high CaO and appropriate TiO2 content is suitable for electroslag remelting of GH8825.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans, H. Poisson: Metall. Mater. Trans. B, 2009, vol.40B, no.3, pp. 271-280.CrossRef V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans, H. Poisson: Metall. Mater. Trans. B, 2009, vol.40B, no.3, pp. 271-280.CrossRef
2.
Zurück zum Zitat S.K. Matity, N.B. Ballal, G. Goldhahn, R. Kwaalla: ISIJ Int., 2009, vol.49, no.6, pp. 910-902.CrossRef S.K. Matity, N.B. Ballal, G. Goldhahn, R. Kwaalla: ISIJ Int., 2009, vol.49, no.6, pp. 910-902.CrossRef
3.
4.
Zurück zum Zitat J.C. Stoephasius, J. Reitz, B. Friedrich: Advanced engineering materials, 2007, vol.9, no.4, pp.252-246.CrossRef J.C. Stoephasius, J. Reitz, B. Friedrich: Advanced engineering materials, 2007, vol.9, no.4, pp.252-246.CrossRef
5.
Zurück zum Zitat T.R. Bandyopadhyay, P.K. Rao, N. Prabhu: Metallurgical and Mining Industry, 2012, vol.4, no.1, pp.16-6. T.R. Bandyopadhyay, P.K. Rao, N. Prabhu: Metallurgical and Mining Industry, 2012, vol.4, no.1, pp.16-6.
6.
Zurück zum Zitat J.D. Busch, J.J. Debarbadillo, J.M. Matthew: 141st TMS Annual Meeting, Orlando, 2012, pp.402-395. J.D. Busch, J.J. Debarbadillo, J.M. Matthew: 141st TMS Annual Meeting, Orlando, 2012, pp.402-395.
7.
Zurück zum Zitat S.G. Stovpchenko, L. Gusiev, L. Medovar: 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, 2014, pp. 47–56. S.G. Stovpchenko, L. Gusiev, L. Medovar: 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, 2014, pp. 47–56.
8.
Zurück zum Zitat W.J. Carmack, G.R. Smolik, K.A. Mccarthy: Journal of Nuclear Materials, 1996, vol.233, no.10, pp.420-416.CrossRef W.J. Carmack, G.R. Smolik, K.A. Mccarthy: Journal of Nuclear Materials, 1996, vol.233, no.10, pp.420-416.CrossRef
9.
Zurück zum Zitat V.Z. Kutsova, D.E. Belokurov: Liteinoe Proizvodstvo, 1991, vol. 4, no. 4, 18-19 V.Z. Kutsova, D.E. Belokurov: Liteinoe Proizvodstvo, 1991, vol. 4, no. 4, 18-19
10.
Zurück zum Zitat D. Ablitzer: Journal De Physique, 1993, vol.3, no.7, pp.882-873. D. Ablitzer: Journal De Physique, 1993, vol.3, no.7, pp.882-873.
11.
Zurück zum Zitat H.B. Bomberger, F.H. Froes: Journal of Metals, 1984, vol.36, no.12, pp.47-39. H.B. Bomberger, F.H. Froes: Journal of Metals, 1984, vol.36, no.12, pp.47-39.
12.
Zurück zum Zitat E. Frank, L. Eugene, J. Dan: IEEE Transactions on Industry Applications, 1976, vol.12, no.6, pp.551-545. E. Frank, L. Eugene, J. Dan: IEEE Transactions on Industry Applications, 1976, vol.12, no.6, pp.551-545.
13.
Zurück zum Zitat C.X. Chen, Y. Wang, J. Fu, E.P. Chen: Acta Metallurgica Sinica, 1981, vol.17, no.1, pp.57-51. C.X. Chen, Y. Wang, J. Fu, E.P. Chen: Acta Metallurgica Sinica, 1981, vol.17, no.1, pp.57-51.
14.
Zurück zum Zitat G. Hoyle: Electroslag processes principles and practice, Applied Science Publishers, London, 1983. G. Hoyle: Electroslag processes principles and practice, Applied Science Publishers, London, 1983.
15.
Zurück zum Zitat K. Blazenko, W. Holzgruber: Berg Huettenmaenn Monatsh, 1978, vol.123, no.1, pp.22-17. K. Blazenko, W. Holzgruber: Berg Huettenmaenn Monatsh, 1978, vol.123, no.1, pp.22-17.
16.
Zurück zum Zitat V.P. Kubikov, M.M. Klyuev, A.A. Sisev: Steel in the USSR, 1987, vol.17, no.11, pp. 505-503. V.P. Kubikov, M.M. Klyuev, A.A. Sisev: Steel in the USSR, 1987, vol.17, no.11, pp. 505-503.
17.
Zurück zum Zitat Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, China, 2010. Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, China, 2010.
18.
Zurück zum Zitat G. Pateisky: Journal of vacuum science & technology, 1972, vol.9, no.6, pp. 1323-1318.CrossRef G. Pateisky: Journal of vacuum science & technology, 1972, vol.9, no.6, pp. 1323-1318.CrossRef
19.
Zurück zum Zitat Z.H. Jiang: The Physical Chemistry and Transmission during Electroslag Remelting, Northeastern University Press, Shenyang, China, 2000. Z.H. Jiang: The Physical Chemistry and Transmission during Electroslag Remelting, Northeastern University Press, Shenyang, China, 2000.
20.
Zurück zum Zitat K. Schwerdtfeger, W. Wepner, G. Pateisky: Ironmaking Steelmaking, 1978, vol.5, no.3, pp. 143-135. K. Schwerdtfeger, W. Wepner, G. Pateisky: Ironmaking Steelmaking, 1978, vol.5, no.3, pp. 143-135.
21.
Zurück zum Zitat W. Jihe: Chin.J.Met.Sci.Technol., 1989, vol.5, pp. 245-235. W. Jihe: Chin.J.Met.Sci.Technol., 1989, vol.5, pp. 245-235.
22.
Zurück zum Zitat W. Jerzak, Z. Kalicka: Archives of Metallurgy and Materials, 2012, vol.57, no.11, pp. 455-449. W. Jerzak, Z. Kalicka: Archives of Metallurgy and Materials, 2012, vol.57, no.11, pp. 455-449.
23.
Zurück zum Zitat A. Karasev, H. Suito: Metall. Mater. Trans. B, 1999, vol.20B, no.4, pp. 257-249.CrossRef A. Karasev, H. Suito: Metall. Mater. Trans. B, 1999, vol.20B, no.4, pp. 257-249.CrossRef
24.
Zurück zum Zitat J.J. Pak, Y.S. Jeong, S.J. Tae, D.S. Kim: Metall. Mater. Trans. B, 2005, vol.36, no.8, pp.493-489.CrossRef J.J. Pak, Y.S. Jeong, S.J. Tae, D.S. Kim: Metall. Mater. Trans. B, 2005, vol.36, no.8, pp.493-489.CrossRef
25.
Zurück zum Zitat K. Suzuki, S.B. Ya, M. Hino: ISIJ Int., 2002, vol. 42, no.2, pp.149-146.CrossRef K. Suzuki, S.B. Ya, M. Hino: ISIJ Int., 2002, vol. 42, no.2, pp.149-146.CrossRef
26.
Zurück zum Zitat T. Yoshikawa, K. Morita: Metall. Mater. Trans. B, 2007, vol.28B, no.8, pp.680-671.CrossRef T. Yoshikawa, K. Morita: Metall. Mater. Trans. B, 2007, vol.28B, no.8, pp.680-671.CrossRef
27.
Zurück zum Zitat X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, H.J. Guo: ISIJ Int., 2009, vol.49, no.12, pp. 1837-1828.CrossRef X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, H.J. Guo: ISIJ Int., 2009, vol.49, no.12, pp. 1837-1828.CrossRef
28.
Zurück zum Zitat X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai: Metall. Mater. Trans. B, 2011, vol.42B, no.12, pp. 1180-1150.CrossRef X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai: Metall. Mater. Trans. B, 2011, vol.42B, no.12, pp. 1180-1150.CrossRef
29.
Zurück zum Zitat X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, J. Zhang: Metall. Mater. Trans. B, 2011, vol.42, no.12, pp. 977-951.CrossRef X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, J. Zhang: Metall. Mater. Trans. B, 2011, vol.42, no.12, pp. 977-951.CrossRef
30.
Zurück zum Zitat X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, J.C. Wang: Metall. Mater. Trans. B, 2011, vol.42, no.8, pp. 770-738.CrossRef X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, J.C. Wang: Metall. Mater. Trans. B, 2011, vol.42, no.8, pp. 770-738.CrossRef
31.
Zurück zum Zitat X.M. Yang, C.B. Shi: Steel Res. Int., 2012, vol.83, no.3, pp. 257-244.CrossRef X.M. Yang, C.B. Shi: Steel Res. Int., 2012, vol.83, no.3, pp. 257-244.CrossRef
32.
Zurück zum Zitat E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, USA, 1980. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, USA, 1980.
33.
Zurück zum Zitat Z.Z. Liu, W. Wu, X.L. Guo: Iron and steel, 2013, vol.48, no.6, pp. 49-35. Z.Z. Liu, W. Wu, X.L. Guo: Iron and steel, 2013, vol.48, no.6, pp. 49-35.
34.
Zurück zum Zitat I. Barin: Thermochemical Data of Pure Substances, Wiley-vch Verlag Gmbh Press, Weinheim, 1995.CrossRef I. Barin: Thermochemical Data of Pure Substances, Wiley-vch Verlag Gmbh Press, Weinheim, 1995.CrossRef
35.
Zurück zum Zitat J. Barin, O. Knacke, O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer, New York, USA, 1977.CrossRef J. Barin, O. Knacke, O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer, New York, USA, 1977.CrossRef
Metadaten
Titel
Effect of Slag on Titanium, Silicon, and Aluminum Contents in Superalloy During Electroslag Remelting
verfasst von
Zhou-Hua Jiang
Dong Hou
Yan-Wu Dong
Yu-Long Cao
Hai-Bo Cao
Wei Gong
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 2/2016
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-015-0530-8

Weitere Artikel der Ausgabe 2/2016

Metallurgical and Materials Transactions B 2/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.