Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 4/2016

26.05.2016

Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands

verfasst von: Qiangqiang Wang, Lifeng Zhang, Seetharaman Sridhar

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat [1] B.D. Khakhalin, A.N. Smolyakov: Metallurgist, 1957, vol. 1, pp. 176-178.CrossRef [1] B.D. Khakhalin, A.N. Smolyakov: Metallurgist, 1957, vol. 1, pp. 176-178.CrossRef
2.
Zurück zum Zitat [2] L.S. Konstantinov, B.D. Khokhalin, A.N. Smoliakov: Metallurgist, 1958, vol. 2, pp. 495-497.CrossRef [2] L.S. Konstantinov, B.D. Khokhalin, A.N. Smoliakov: Metallurgist, 1958, vol. 2, pp. 495-497.CrossRef
3.
Zurück zum Zitat [3] I.O. Tsypin, N.S. Pavlenko, V.A. Rusalkin: Met. Sci. Heat Treat, 1968, vol. 10, pp. 745-746.CrossRef [3] I.O. Tsypin, N.S. Pavlenko, V.A. Rusalkin: Met. Sci. Heat Treat, 1968, vol. 10, pp. 745-746.CrossRef
4.
Zurück zum Zitat [4] G. Martinez, M. Garnier, F. Durand: Appl. Sci. Res, 1987, vol. 44, pp. 225-239.CrossRef [4] G. Martinez, M. Garnier, F. Durand: Appl. Sci. Res, 1987, vol. 44, pp. 225-239.CrossRef
5.
Zurück zum Zitat C.B. Stravs, J.N. Jager: Apparatus for forming pipe or other articles in continuous lengths, the United States, 1904, p. 777561. C.B. Stravs, J.N. Jager: Apparatus for forming pipe or other articles in continuous lengths, the United States, 1904, p. 777561.
6.
Zurück zum Zitat G.R. Leghorn: Continuous centrifugal casting of tube using liquid mold, the United States, 1971, p. 3616842. G.R. Leghorn: Continuous centrifugal casting of tube using liquid mold, the United States, 1971, p. 3616842.
7.
Zurück zum Zitat W.H. Milispaugh: Centrifugal casting method, the United States, 1931, p. 1828335. W.H. Milispaugh: Centrifugal casting method, the United States, 1931, p. 1828335.
8.
Zurück zum Zitat [8] J. Anagnostopoulos, G. Bergeles: Metall. Mater. Trans. B, 1999, vol. 30B, p. 1095-1105.CrossRef [8] J. Anagnostopoulos, G. Bergeles: Metall. Mater. Trans. B, 1999, vol. 30B, p. 1095-1105.CrossRef
9.
Zurück zum Zitat [9] A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, p. 1321-1327.CrossRef [9] A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, p. 1321-1327.CrossRef
10.
Zurück zum Zitat J. Aoki, B.G. Thomas, J. Peter, K. D. Peaslee: Proc. AISTech 2004 Conf., 2004, pp. 1045–56. J. Aoki, B.G. Thomas, J. Peter, K. D. Peaslee: Proc. AISTech 2004 Conf., 2004, pp. 1045–56.
11.
Zurück zum Zitat [11] L. Zhang: Modell. Simul. Mater. Sci. Eng, 2000, vol. 8: pp. 463.CrossRef [11] L. Zhang: Modell. Simul. Mater. Sci. Eng, 2000, vol. 8: pp. 463.CrossRef
12.
Zurück zum Zitat [12] Y. Xie, S. Orsten, F. Oeters: ISIJ Int., 1992, vol. 32, pp. 66-75.CrossRef [12] Y. Xie, S. Orsten, F. Oeters: ISIJ Int., 1992, vol. 32, pp. 66-75.CrossRef
13.
Zurück zum Zitat [13] J.E. Lait, J.K. Brimacombe, F.Weinberg: Ironmaking Steelmaking, 1974, vol. 1, pp. 90-97. [13] J.E. Lait, J.K. Brimacombe, F.Weinberg: Ironmaking Steelmaking, 1974, vol. 1, pp. 90-97.
14.
Zurück zum Zitat [14] C.W. Hirt, B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-225.CrossRef [14] C.W. Hirt, B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-225.CrossRef
15.
Zurück zum Zitat [15] B.G. Thomas, X. Huang, R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527-547.CrossRef [15] B.G. Thomas, X. Huang, R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527-547.CrossRef
16.
17.
Zurück zum Zitat [17] G.A. Panaras, A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117-1126.CrossRef [17] G.A. Panaras, A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117-1126.CrossRef
18.
Zurück zum Zitat [18] L. Tan, H. Shen, B. Liu, X. Liu, R. Xu, Y. Li: Acta Metall. Sin., 2003, vol. 39, pp. 435-438. [18] L. Tan, H. Shen, B. Liu, X. Liu, R. Xu, Y. Li: Acta Metall. Sin., 2003, vol. 39, pp. 435-438.
19.
Zurück zum Zitat [19] L. Zhang, Y. Wang, X. Zuo: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 534-550.CrossRef [19] L. Zhang, Y. Wang, X. Zuo: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 534-550.CrossRef
20.
Zurück zum Zitat [20] R. Chaudhary, G. Lee, B.G. Thomas, S. Kim: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 870-884.CrossRef [20] R. Chaudhary, G. Lee, B.G. Thomas, S. Kim: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 870-884.CrossRef
21.
22.
23.
Zurück zum Zitat [23] I.C. Ramos, J.J. Barreto, S.G. Hernandez: ISIJ Int., 2013, vol. 53, pp. 802-808.CrossRef [23] I.C. Ramos, J.J. Barreto, S.G. Hernandez: ISIJ Int., 2013, vol. 53, pp. 802-808.CrossRef
24.
25.
Zurück zum Zitat [25] R. Mirandal, M.A. Barron, J. Barreto, L. Hoyos, J. Gonzalez: ISIJ Int., 2005, vol. 45, pp. 1626-1635.CrossRef [25] R. Mirandal, M.A. Barron, J. Barreto, L. Hoyos, J. Gonzalez: ISIJ Int., 2005, vol. 45, pp. 1626-1635.CrossRef
26.
Zurück zum Zitat [26] Y. Wang, L. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1319-1351.CrossRef [26] Y. Wang, L. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1319-1351.CrossRef
27.
Zurück zum Zitat R. Liu, B.G. Thomas, B. Forman, H. Yin: Proc. AISTech 2012 Conf., 2012, pp. 1317–27. R. Liu, B.G. Thomas, B. Forman, H. Yin: Proc. AISTech 2012 Conf., 2012, pp. 1317–27.
28.
Zurück zum Zitat [28] H.A. Gutierrez, G.B. Cardiel, J.J. Barreto, S.G. Hernandez: ISIJ Int., 2014, vol. 54, pp. 1304-1313.CrossRef [28] H.A. Gutierrez, G.B. Cardiel, J.J. Barreto, S.G. Hernandez: ISIJ Int., 2014, vol. 54, pp. 1304-1313.CrossRef
29.
30.
Zurück zum Zitat [30] S. Asai, J. Szekely: Ironmaking Steelmaking, 1975, vol. 2, pp. 205-213. [30] S. Asai, J. Szekely: Ironmaking Steelmaking, 1975, vol. 2, pp. 205-213.
31.
Zurück zum Zitat [31] Q. Yuan, B.G. Thomas, S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 703-714.CrossRef [31] Q. Yuan, B.G. Thomas, S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 703-714.CrossRef
32.
Zurück zum Zitat [32] D. Mazumdar, R.I.L. Guthrie: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 308-312.CrossRef [32] D. Mazumdar, R.I.L. Guthrie: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 308-312.CrossRef
33.
Zurück zum Zitat [33] A. Alexiadis, P. Gardin, J.F. Domgin: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 949-956.CrossRef [33] A. Alexiadis, P. Gardin, J.F. Domgin: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 949-956.CrossRef
34.
Zurück zum Zitat [34] Q. Wang, L. Zhang, S. Sridhar, W. Yang, Y. Wang, S. Yang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1594-1612.CrossRef [34] Q. Wang, L. Zhang, S. Sridhar, W. Yang, Y. Wang, S. Yang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1594-1612.CrossRef
35.
Zurück zum Zitat [34] Q. Wang, L. Zhang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1933-1949.CrossRef [34] Q. Wang, L. Zhang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1933-1949.CrossRef
36.
Zurück zum Zitat R. Liu, B.G. Thomas, L. Kalra, T. Bhattacharya, A. Dasgupta: Proc. AISTech 2013 Conf., 2013, pp. 1351–64. R. Liu, B.G. Thomas, L. Kalra, T. Bhattacharya, A. Dasgupta: Proc. AISTech 2013 Conf., 2013, pp. 1351–64.
37.
Zurück zum Zitat [37] B.E. Launder, D.B. Spalding: Comput. Method Appl. M., 1974, vol. 3, pp. 269-289.CrossRef [37] B.E. Launder, D.B. Spalding: Comput. Method Appl. M., 1974, vol. 3, pp. 269-289.CrossRef
38.
Zurück zum Zitat [38] B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, M.B. Assar: ISIJ Int., 2001, vol. 41, pp. 1262-1271.CrossRef [38] B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, M.B. Assar: ISIJ Int., 2001, vol. 41, pp. 1262-1271.CrossRef
39.
Zurück zum Zitat [39] B.E. Launder, D.B. Spalding: Mathematical Models of Turbulence. New York: Academic Press, 1972. [39] B.E. Launder, D.B. Spalding: Mathematical Models of Turbulence. New York: Academic Press, 1972.
40.
Zurück zum Zitat [40] Y. Ho, C. Chen, W. Hwang: ISIJ Int., 1994, vol. 34, pp. 255-264.CrossRef [40] Y. Ho, C. Chen, W. Hwang: ISIJ Int., 1994, vol. 34, pp. 255-264.CrossRef
41.
Zurück zum Zitat [41] X. Song, S. Cheng, Z. Cheng: ISIJ Int., 2012, vol. 52, pp. 1824-1831.CrossRef [41] X. Song, S. Cheng, Z. Cheng: ISIJ Int., 2012, vol. 52, pp. 1824-1831.CrossRef
42.
Zurück zum Zitat [42] E. Loth: Progress in Energy and Combustion Science, 2000, vol. 26, pp. 161-223.CrossRef [42] E. Loth: Progress in Energy and Combustion Science, 2000, vol. 26, pp. 161-223.CrossRef
43.
Zurück zum Zitat [43] L. Zhang: Steel Res. Int., 2006, vol. 77, pp. 158-169. [43] L. Zhang: Steel Res. Int., 2006, vol. 77, pp. 158-169.
44.
Zurück zum Zitat [44] C. Pfeiler, M. Wu, A. Ludwig: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 115-120.CrossRef [44] C. Pfeiler, M. Wu, A. Ludwig: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 115-120.CrossRef
45.
Zurück zum Zitat [45] J.U. Brackbill, D.B. Kothe, C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335-354.CrossRef [45] J.U. Brackbill, D.B. Kothe, C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335-354.CrossRef
46.
Zurück zum Zitat [46] P. Liovic, J. Liow, M. Rudman: ISIJ Int., 2001, vol. 41, pp. 225-233.CrossRef [46] P. Liovic, J. Liow, M. Rudman: ISIJ Int., 2001, vol. 41, pp. 225-233.CrossRef
47.
Zurück zum Zitat ANSYS FLUENT 14.0. Canonsburg, PA: ANSYS, Inc, 2011. ANSYS FLUENT 14.0. Canonsburg, PA: ANSYS, Inc, 2011.
48.
Zurück zum Zitat [48] Y. Miki, B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 639-654.CrossRef [48] Y. Miki, B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 639-654.CrossRef
49.
Zurück zum Zitat [49] P.G. Mukunda, S.R. A, S.S. Rao: Met. Mater. Int., 2010, vol. 16, pp. 137-143.CrossRef [49] P.G. Mukunda, S.R. A, S.S. Rao: Met. Mater. Int., 2010, vol. 16, pp. 137-143.CrossRef
50.
Zurück zum Zitat [50] J. Bohacekn, A. Kharicha, A. Ludwig, M. Wu: ISIJ Int., 2014, vol. 54, pp. 266-274.CrossRef [50] J. Bohacekn, A. Kharicha, A. Ludwig, M. Wu: ISIJ Int., 2014, vol. 54, pp. 266-274.CrossRef
Metadaten
Titel
Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands
verfasst von
Qiangqiang Wang
Lifeng Zhang
Seetharaman Sridhar
Publikationsdatum
26.05.2016
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 4/2016
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-016-0701-2

Weitere Artikel der Ausgabe 4/2016

Metallurgical and Materials Transactions B 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.