Skip to main content
Log in

Chlorination Kinetics of Titanium Nitride for Production of Titanium Tetrachloride from Nitrided Ilmenite

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The kinetics of chlorination of titanium nitride (TiN) was investigated in the temperature range of 523 K to 673 K (250 °C to 400 °C). The results showed that the extent of chlorination slightly increased with increasing temperature and decreasing particle size of titanium nitride at constant flow rate of N2-Cl2 gas mixture. At 523 K (250 °C), the extent of chlorination was 85.6 pct in 60 minutes whereas at 673 K (400 °C), it was 97.7 pct investigated by weight loss measurement and confirmed by ICP analyses. The experimental results indicated that a shrinking unreacted core model with mixed-control mechanism governed the chlorination rate. It was observed that the surface chemical reaction of chlorine gas on the surface of TiN particles was rate controlling in the initial stage and, during later stage, internal (pore) diffusion through the intermediate product layer was rate controlling step. Overall the process follows the mixed-control model incorporating both chemical reaction and internal diffusion control. The activation energy for the chlorination of TiN was found to be about 10.97 kJ mol−1. In processing TiCl4 from TiN and TiO0.02C0.13N0.85, the solids involved in the chlorination process were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectrometer (EDX). The SEM/EDX results demonstrated the consumption of TiN particles with extent of chlorination that showed shrinking core behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

b :

Stoichiometric coefficient

C A :

Concentration (mol cm−3)

D :

Molecular diffusion coefficient (m2 s−1)

t :

Time (minute)

τ :

Total conversion time (minute)

k s :

Surface reaction rate constant (min−1)

k d :

External diffusion-controlled rate constant (min−1)

\( k^{\prime}_{\text{d}} \) :

Internal (pore) diffusion-controlled rate constant (min−1)

k M :

Mixed-controlled rate constant(min−1)

R 0 :

Initial radius (cm)

X :

Fraction extracted

ρ TiN :

Molar density (mol cm−3)

E a :

Apparent activation energy (kJ mol−1)

T :

Temperature (K)

P :

Pressure (bar)

σ AB :

Collision diameter, a Lennard-Jones parameter (Å)

ΩAB :

Diffusion collision integral, dimensionless

M A :

Molecular weights of TiCl4

M B :

Molecular weights of Cl2

References

  1. A. Adipuri, G. Zhang, and O. Ostrovski: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 779–787.

    Article  Google Scholar 

  2. D.L. Marchisio, F. Omegna, and A.A. Barresi: Chem. Eng. J., 2009, vol. 146, pp. 456-465.

    Article  Google Scholar 

  3. J. Guo, X. Cai, Y. Li, R. Zhai, S. Zhou, P. Na: Chem. Eng. J., 2013, vol. 221, pp. 342-352.

    Article  Google Scholar 

  4. S.A. Rezan, G. Zhang, and O. Ostrovski: Metal. Mater. Trans. B, 2012, vol. 43B, pp. 73-81.

    Article  Google Scholar 

  5. L.C.D.S. Maria: Polymer, 1995,vol. 36, pp. 217-219.

    Article  Google Scholar 

  6. S.-W. Lee, K.-S. Ahn, K. Zhu, N.R. Neale, and A.J. Frank: J. Phys. Chem. C, 2012, vol. 116, pp. 21285-21290.

    Article  Google Scholar 

  7. A. Moiseev, F. Qi, J. Deubener, and A. Weber: Chem. Eng. J., 2011, vol. 170, pp. 308-315.

    Article  Google Scholar 

  8. W. Zhang, Z. Zhu, and C.Y. Cheng: Hydrometallurgy, 2011, vol 108, pp. 177-188.

    Article  Google Scholar 

  9. W. Kroll: Trans. Electrochemical Soc., 1940, vol. 78, pp. 35-47.

    Article  Google Scholar 

  10. C. Doblin, A. Chryss, and A. Monch: Key Eng. Mater., 2012, vol. 520, pp. 95-100.

    Article  Google Scholar 

  11. C. Schwandt, G.R. Doughty, and D.J. Fray: Key Eng. Mater., 2010, vol. 436, pp. 13-25.

    Article  Google Scholar 

  12. T. Kikuchi, M. Yoshida, S. Matsuura, S. Natsui, E. Tsuji, H. Habazaki, and R.O. Suzuki: J. Phys. Chem. Solid, 2014, vol. 75, pp. 1041-1048.

    Article  Google Scholar 

  13. H. Zheng, H. Ito and T.H. Okabe: Mater. Trans., 2007, vol. 48, pp. 2244-2251.

    Article  Google Scholar 

  14. J. Kang and T.H. Okabe: Int. J. Miner. Proc., 2016, vol. 149, pp. 111-118.

    Article  Google Scholar 

  15. S.A. Rezan, G. Zhang, and O. Ostrovski: ISIJ Int., 2012, vol. 52, pp 363–368.

    Article  Google Scholar 

  16. A. Adipuri, Y. Li, G. Zhang, and O. Ostrovski: Int. J. Miner. Proc., 2011, vol. 100, pp. 166-171.

    Article  Google Scholar 

  17. Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T.Y. Zhang, P. Sun, M.L. Free, and J. Guo: Chem. Eng. J., 2016, vol. 286, pp. 517-527.

    Article  Google Scholar 

  18. A. Chrysanthou and N. Hassine: Powder Differ., 1994, vol. 9, pp. 202-203.

    Article  Google Scholar 

  19. S.A. Rezan, G. Zhang, and O. Ostrovski: J. Am. Ceram. Soc., 2011, vol. 94, pp. 3804-3811.

    Article  Google Scholar 

  20. E. Ahmadi, E.M. Sereiratana, S.A. Rezan, F.Y. Yeoh, M.N. Ahmad Fauzi, and G. Zhang: Mater. Sci. Forum, 2016, vol. 860, pp. 111-114.

    Article  Google Scholar 

  21. E. Ahmadi, S.A.R.B.S.A. Hamid, H.B. Hussin, S.R.N.B. Baharun, K.S.B. Ariffin, and M.N.A. Fauzi: INROADS-Int. J. Jaipur National Univ., 2016, vol. 5, pp. 11–16.

  22. A. Roine: Outokumpu HSC Chemistry, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Outokumpu, Finland, 2002, v 5.11.

  23. E. Ahmadi, A. Fauzi, H. Hussin, N. Baharun, K.S. Ariffin, and S.A. Rezan: Int J Miner Metall Mater., 2017, vol. 24(4), pp. 444-454.

    Article  Google Scholar 

  24. F.P. Venable and D.H. Jackson: J. Am. Chem. Soc., 1920, vol. 42, pp. 237-239.

    Article  Google Scholar 

  25. O. Ostrovski, G. Zhang, and N. Anacleto: 10th World Conference on Titanium; Ti-2003 Science and Technology, Germany, 2003, pp. 121–28.

  26. S.A. Rezan, A. Adipuri, G. Zhang, and O. Ostrovski: XXV International Mineral Processing Congress (IMPC 2010), Brisbane, Australia, 2010.

    Google Scholar 

  27. J. Blackwood and B. Cullis: Aust. J. Chem., 1970, vol. 23, pp. 725-735.

    Article  Google Scholar 

  28. P. Becker, F. Glenk, M. Kormann, N. Popovska, and B.J.M. Etzold: Chem. Eng. J., 2010, vol. 159, pp. 236-241.

    Article  Google Scholar 

  29. J. Van Deventer: Thermo. Acta, 1988, vol. 124, pp. 205-215.

    Article  Google Scholar 

  30. O. Levenspiel: Chemical Reaction Engineering, 3rd edn., Wiley, New York, 1999, pp 566-586.

    Google Scholar 

  31. E. Allain, M. Djona, and I. Gaballah: Metal. Mater. Trans. B,1997, vol. 28B, pp. 223-233.

    Article  Google Scholar 

  32. F. Yang and V. Hlavacek: Metal. Mater. Trans. B, 1998, vol. 29B, pp. 1297-1307.

    Article  Google Scholar 

  33. O.R. Inderwildi and M. Kraft: Chem. Phys. Chem., 2007, vol. 8, pp. 444-451.

    Article  Google Scholar 

  34. R.J. Fruehan: Metal. Trans., 1972, vol. 3, pp. 2585-2592.

    Article  Google Scholar 

  35. D.R. Gaskell: An Introduction to Transport Phenomena in Materials Engineering, 2nd edn. Momentum Press, LLC, New York, 2012, pp. 267-273.

    Book  Google Scholar 

  36. W.K.S. Chiu, Y. Jaluria, and N.G. Glumac: J. Manuf. Sci. Eng., 2002, vol. 124, pp. 715-724.

    Article  Google Scholar 

  37. K. Dyer, J. Perkyns, B. Pettitt, and G. Stell: Cond. Matter Phys., 2007, vol. 10, pp. 331–342.

    Article  Google Scholar 

  38. Y.A. Cengel and A.J. Ghajar: Heat and Mass Transfer: Fundamentals and Applications, 5th edn. McGraw-Hill, New York, 2014, pp. 842-845.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Universiti Sains Malaysia (USM) Fellowship (APEX1002/JHEA/ATSG4001). This work was also financially supported by the USM and Ministry of Higher Education (MOHE) of Malaysia through Fundamental Research Grant Scheme (FRGS) (Nos. 203/PBAHAN/6071230 and 203/PBAHAN/607126) and Research University Grant for Individual (RUI) from USM (No. 1001/PBAHAN/814273). The authors are also thankful to USM technicians, especially Mr. Kemuridan Bin Md. Desa for supporting the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheikh Abdul Rezan.

Additional information

Manuscript submitted November 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Rezan, S.A., Baharun, N. et al. Chlorination Kinetics of Titanium Nitride for Production of Titanium Tetrachloride from Nitrided Ilmenite. Metall Mater Trans B 48, 2354–2366 (2017). https://doi.org/10.1007/s11663-017-1011-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1011-z

Keywords

Navigation