Skip to main content

Advertisement

Log in

Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Oxygen blast furnace (OBF) ironmaking process has the potential to realize “zero carbon footprint” production, but suffers from the “thermal shortage” problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Orth, N. Anastasijevic and H. Eichberger, Miner. Eng. 2007, vol. 20, pp. 854–61.

    Article  Google Scholar 

  2. C. B. Xu and D. C. Cang, J. Iron Steel Res. Int. 2010, vol. 17, pp. 1-7.

    Article  Google Scholar 

  3. A.K. Biswas: Principles of blast furnace ironmaking: theory and practice, Cootha Publishing House, Brisbane, Australia, 1981.

    Google Scholar 

  4. A. I. Babich, H. W. Gudenau, K. T. Mavrommatis, C. Froehling, A. Formoso, A. Cores and L. Garcia, Revista De Metalurgia 2002, vol. 38, pp. 288-305.

    Article  Google Scholar 

  5. K. Takeda, T. Anyashiki, T. Sato, N. Oyama, S. Watakabe and M. Sato, Steel Res. Int. 2011, vol. 82, pp. 512-520.

    Article  Google Scholar 

  6. T. Ariyama and M. Sato, ISIJ Int. 2006, vol. 46, pp. 1736-1744.

    Article  Google Scholar 

  7. Y. Ujisawa, K. Nakano, Y. Matsukura, K. Sunahara, S. Komatsu and T. Yamamoto, ISIJ Int. 2005, vol. 45, pp. 1379-1385.

    Article  Google Scholar 

  8. T. Ariyama, R. Murai, J. Ishii and M. Sato, ISIJ Int. 2005, vol. 45, pp. 1371-1378.

    Article  Google Scholar 

  9. K. Takahashi, T. Nouchi, M. Sato and T. Ariyama, ISIJ Int. 2015, vol. 55, pp. 1866-1875.

    Article  Google Scholar 

  10. Y. Ohno, M. Matsuura, H. Mitsufuji and T. Furukawa, ISIJ Int. 1992, vol. 32, pp. 838-847.

    Article  Google Scholar 

  11. M. Qin, Z. Gao, Wang. G. and Y. Zhang, Ironmak. Steelmak. 1988, vol. 15, pp. 287-92.

    Google Scholar 

  12. H. Yamaoka and Y. Kamei, ISIJ Int. 1992, vol. 32, pp. 709-715.

    Article  Google Scholar 

  13. T. Miyashit, H. Nishio, T. Shimotsu, T. Yamada, M. Ohtsuki, Trans. Iron Steel Ins. Jpn., 1973, vol. 13, pp. 1-10.

    Google Scholar 

  14. Y.H. Qi, D.L. Yan, J.J. Gao, J.C. Zhang and M.K. Li, Iron and Steel 2011, vol. 46, pp. 6-8.

    Google Scholar 

  15. F. Fink, Steel Times 1996, vol. 36, pp. 398-99.

    Google Scholar 

  16. M. A. Tseitlin, S. E. Lazutkin and G. M. Styopin, ISIJ Int. 1994, vol. 34, pp. 570-573.

    Article  Google Scholar 

  17. M. S. Chu, H. Nogami and J. Yagi, ISIJ Int. 2004, vol. 44, pp. 2159-2167.

    Article  Google Scholar 

  18. W.K. Lu and R.V. Kumar, ISS Trans. 1984, vol. 5, pp. 25-31.

    Google Scholar 

  19. P. Jin, Z. Y. Jiang, C. Bao, Y. X. Lu, J. L. Zhang and X. X. Zhang, Steel Res. Int. 2016, vol. 87, pp. 320-329.

    Article  Google Scholar 

  20. Z. L. Zhang, J. L. Meng, L. Guo and Z. C. Guo, JOM 2015, vol. 67, pp. 1936-1944.

    Article  Google Scholar 

  21. Z. L. Zhang, J. L. Meng, L. Guo and Z. C. Guo, JOM 2015, vol. 67, pp. 1945-1955.

    Article  Google Scholar 

  22. P. R. Austin, H. Nogami and J. Yagi, ISIJ Int. 1998, vol. 38, pp. 239-245.

    Article  Google Scholar 

  23. J. van der Stel, G. Louwerse, D. Sert, A. Hirsch, N. Eklund and M. Pettersson, Ironmak. Steelmak. 2013, vol. 40, pp. 483-489.

    Article  Google Scholar 

  24. M.S. Chu, H. Nogami and J. Yagi, ISIJ Int. 2004, vol. 44, pp. 801-08.

    Article  Google Scholar 

  25. Z. Liu, M. Chu, T. Guo, H. Wang and X. Fu, Ironmak. Steelmak. 2016, vol. 43, pp. 64-73.

    Article  Google Scholar 

  26. H. Nogami, Y. Kashiwaya and D. Yamada, ISIJ Int. 2012, vol. 52, pp. 1523-1527.

    Article  Google Scholar 

  27. I. F. Kurunov, Metallurgist 2012, vol. 56, pp. 241-246.

    Article  Google Scholar 

  28. S. B. Kuang, Z. Y. Li, D. L. Yan, Y. H. Qi and A. B. Yu, Miner. Eng. 2014, vol. 63, pp. 45-56.

    Article  Google Scholar 

  29. T. Ariyama, S. Natsui, T. Kon, S. Ueda, S. Kikuchi and H. Nogami, ISIJ Int. 2014, vol. 54, pp. 1457-1471.

    Article  Google Scholar 

  30. S. B. Kuang, Z. Y. Li and A.B. YU, Steel Res. Int. 2018, vol. 89, 170071: 1-25.

    Article  Google Scholar 

  31. S. Ueda, S. Natsui, H. Nogami, J. Yagi and T. Ariyama, ISIJ Int. 2010, vol. 50, pp. 914-923.

    Article  Google Scholar 

  32. J. Yagi, ISIJ Int. 1993, vol. 33, pp. 619-639.

    Article  Google Scholar 

  33. X. F. Dong, A. B. Yu, J. I. Yagi and P. Zulli, ISIJ Int. 2007, vol. 47, pp. 1553-1570.

    Article  Google Scholar 

  34. X. F. Dong, A. B. Yu, S. J. Chew and P. Zulli, Metall. Mater. Trans. B 2010, vol. 41, pp. 330-349.

    Article  Google Scholar 

  35. K. Yang, S. Choi, J. Chung and J. Yagi, ISIJ Int. 2010, vol. 50, pp. 972-980.

    Article  Google Scholar 

  36. T. Inada, K. Takatani, K. Takata and T. Yamamoto, ISIJ Int. 2003, vol. 43, pp. 1143-1150.

    Article  Google Scholar 

  37. P. R. Austin, H. Nogami and J. Yagi, ISIJ Int. 1997, vol. 37, pp. 748-755.

    Article  Google Scholar 

  38. J. A. de Castro, A. J. da Silva, Y. Sasaki and J. Yagi, ISIJ Int. 2011, vol. 51, pp. 748-758.

    Article  Google Scholar 

  39. S. J. Chew, P. Zulli and A. B. Yu, ISIJ Int. 2001, vol. 41, pp. 1112-1121.

    Article  Google Scholar 

  40. S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and U. Tuzun, ISIJ Int. 1998, vol. 38, pp. 1311-1319.

    Article  Google Scholar 

  41. P. R. Austin, H. Nogami and J. Yagi, ISIJ Int. 1997, vol. 37, pp. 458-467.

    Article  Google Scholar 

  42. S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, M. Osame, P. Sikstrom, L. S. Okvist and J. O. Wikstrom, ISIJ Int. 2013, vol. 53, pp. 2065-2071.

    Article  Google Scholar 

  43. Z. Y. Li, S. B. Kuang, D. L. Yan, Y. H. Qi and A. B. Yu, Metall. Mater. Trans. B 2017, vol. 48, pp. 602-618.

    Article  Google Scholar 

  44. H. T. Wang, M. S. Chu, T. L. Guo, W. Zhao, C. Feng, Z. G. Liu and J. Tang, Steel Res. Int. 2016, vol. 87, pp. 539-549.

    Article  Google Scholar 

  45. S. Natsui, S. Ueda, H. Nogami, J. Kano, R. Inoue and T. Ariyama, ISIJ Int. 2011, vol. 51, pp. 1410-1417.

    Article  Google Scholar 

  46. N. Standish and J. B. Drinkwat, Journal of Metals 1972, vol. 24, pp. 43-&.

    Google Scholar 

  47. H. Nishio and T. Miyashita, Tetso-to-Hagane 1973, vol. 59, pp. 1506-22.

    Article  Google Scholar 

  48. Y. Omori: Blast furnace phenomena and modelling Elsvier, London and New York 1987.

  49. I. Muchi, Trans. Iron Steel Ins. Jpn. 1967, vol. 7, pp. 223-37.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australian Research Council (ARC) (IH140100035), the Natural Science Foundation of China (NSFC) (U1560205), and the Baosteel Australia Research and Development Center (BAJC) (BA16002) for the financial support of this work; and to the National Computational Infrastructure (NCI) and Intersect Australia for the use of their high-performance computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyang Li or Shibo Kuang.

Additional information

Manuscript submitted August 4, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Kuang, S., Yu, A. et al. Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes. Metall Mater Trans B 49, 1995–2010 (2018). https://doi.org/10.1007/s11663-018-1259-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1259-y

Keywords

Navigation