Skip to main content
Log in

Modeling of the peritectic reaction and macro-segregation in casting of low carbon steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Macro-microscopic models have been developed to describe the macrosegregation behavior associated with the peritectic reaction of low carbon steel. The macrosegregation model has been established on the basis of previously published work and experimental data. A microscopic model of a three-phase reaction L+δγ has been modeled by using Fredriksson’s approach. Four horizontal and unidirectional solidified experimental groups simulating continuous casting have been performed with a low carbon steel containing 0.13 wt pct carbon. The extent of macrosegregation of carbon was determined by wet chemical analysis of millings. It is confirmed, by comparing calculated results with experimental results, that this model successfully predicts the occurrence of macrosegregation. The results indicate that a peritectic reaction which is associated with a high cooling rate generates high thermal contraction and a high tensile strain rate at the peritectic temperature. Therefore, the macrosegregation, particularly at the ingot surface, is very sensitive to the cooling rate, where extremely high positive segregation was observed in the case of a high cooling rate. However, in the case of slow cooling rate, negative segregation was noted. The mechanism of macrosegregation with peritectic reaction is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Tseng, J. Zou, H.P. Wang, and S.H. Hoole: in Polymers and Polymeric Composites, ASME, New York, NY, 1990, MD-vol. 19, p. 647.

    Google Scholar 

  2. B.G. Thomas, I.V. Samarasekera, and J.K. Brimacombe: Metall. Trans. B, 1984, vol. 15B, pp. 307–18.

    CAS  Google Scholar 

  3. I. Ohnaka and T. Shimazu: Proc. 6th Int. Iron and Steel Congr., Iron and Steel Institute, Tokyo, Japan, 1990, vol. p. 681.

    Google Scholar 

  4. M. El-Bealy and H. Fredriksson: Proc. Numerical Methods in Thermal Problems Conf., Stanford CA, 1991, vol. 1, p. 280.

  5. H. Fredriksson: Metall. Trans., 1972, vol. 3, pp. 2989.

    CAS  Google Scholar 

  6. A.P. Titchener and J.A. Spittle: Acta Metall., 1975, vol. 23, p. 2023.

    Google Scholar 

  7. H. Fredriksson: Scand. J. Metall., 1976, vol. 5, p. 27.

    CAS  Google Scholar 

  8. H. Fredriksson: Solidification and Casting of Metals, The Metals Society, London, 1977, p. 131.

    Google Scholar 

  9. H. Fredriksson and J. Stjerndahl: Metall. Trans. A, 1977, vol. 8A, pp. 1107.

    CAS  Google Scholar 

  10. D.H. St. John and L.M. Hogan: Acta Metall., 1977, vol. 25, p. 77.

    Article  Google Scholar 

  11. H. Fredriksson: Met. Sci., 1979, vol. 8, p. 77.

    Google Scholar 

  12. H. Fredriksson and T. Nylén: Met. Sci., 1982, vol. 16, p. 283.

    Article  CAS  Google Scholar 

  13. H. Fredriksson and J. Stjerndahl: Met. Sci., 1982, vol. 16, p. 575.

    Article  CAS  Google Scholar 

  14. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka: Metall. Trans. B, 1986, vol. 17B, pp. 845.

    CAS  Google Scholar 

  15. D.H. St. John and L.M. Hogan: Acta Metall., 1987, vol. 35, p. 171.

    Article  Google Scholar 

  16. D.H. St. John: Acta Metall., 1990, vol. 16, p. 283.

    Google Scholar 

  17. W.J. Boettinger: Metall. Trans., 1974, vol. 5, pp. 2023.

    CAS  Google Scholar 

  18. M.C.M. Cornelissen: Ironmaking and Steelmaking, 1986, vol. 13 (4), p. 204.

    CAS  Google Scholar 

  19. A.A. Howe and D.H. Kirkwood: Solidification Processing, Ranmoor House, Sheffield, United Kingdom, 1987, Sept., p. 41.

    Google Scholar 

  20. J.A. Sartell and D.J. Mack: J. Inst. Met., 1964, vol. 93, p. 19.

    CAS  Google Scholar 

  21. H.W. Kerr, J. Cisse, and G.F. Billing: Acta Metall., 1974, vol. 22, p. 677.

    Article  CAS  Google Scholar 

  22. H. Fredriksson: Met. Sci., 1976, vol. 10, p. 77.

    Article  CAS  Google Scholar 

  23. G. Van Drunen, J.K. Brimacombe, and F. Weinberg: Ironmaking and Steelmaking, 1975, vol. 2, p. 125.

    Google Scholar 

  24. J. Miettinen: Scand. J. Metall., 1993, vol. 22, p. 317.

    CAS  Google Scholar 

  25. J.K. Brimacombe, F. Weinberg, and E.B. Hawbolt: Metall. Trans. B, 1979, vol. 10B, pp. 279.

    CAS  Google Scholar 

  26. J. Zou and A.A. Tseng: Metall. Trans. A, 1992, vol. 23A, pp. 457.

    CAS  Google Scholar 

  27. K. Wünnenberg and R. Flender: Ironmaking and Steelmaking, 1985, vol. 12, p. 22.

    Google Scholar 

  28. M. El-Bealy: to be published.

  29. J.O. Kristiansson: Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 1982.

    Google Scholar 

  30. A.J. Pedraza, S. Harriague, and F. Pedraza: Metall. Trans. B, 1980, vol. 11B, pp. 321.

    Google Scholar 

  31. P.J. Wray: Metall. Trans. A, 1982, vol. 13A, pp. 125.

    CAS  Google Scholar 

  32. A Guide to the Solidification of Steels, Jernkontoret, Stockholm, 1977, p. 20.

  33. I. Jimpo and A.W. Cramb: Metall. Trans. B, 1993, vol. 24B, pp. 5.

    Google Scholar 

  34. J.O. Kristiansson: J. Thermal Stresses, 1982, vol. 5, p. 315.

    Google Scholar 

  35. M. El-Bealy: Scand. J. Metall., 1995, vol. 24, pp. 106.

    CAS  Google Scholar 

  36. M. El-Bealy and H. Fredriksson: Scand. J. Metall., 1994, vol. 23, p. 140.

    CAS  Google Scholar 

  37. K. Nakano, K. Suzuki, and S. Oya: Imono J. Jpn. Foundary’s Soc., 1973, vol. 45, p. 954.

    CAS  Google Scholar 

  38. T. Motegi and A. Ohno: Trans. Jpn. Inst. Met., 1984, vol. 25, p. 122.

    Google Scholar 

  39. H. Kato and J.R. Cahoon: The University of Maintoba, Winnipeg, MB, Canada, unpublished work, 1984.

  40. H. Kato and J.R. Cahoon: Metall. Trans. A, 1985, vol. 16A, pp. 579.

    CAS  Google Scholar 

  41. H. Fredriksson and M. Thergerström: Scand. J. Metall., 1979, vol. 8, pp. 232.

    CAS  Google Scholar 

  42. J.S. Kirkaldy and W.V. Youdelis: Trans. TMS-AIME, 1958, vol. 212, p. 833.

    CAS  Google Scholar 

  43. M.C. Fleming, R. Mehrabian, and G.E. Nereo: TMS-AIME, 1968, vol. 242, p. 41.

    Google Scholar 

  44. F. Kaempffer and F. Weinberg: Metall. Trans., 1971, vol. 2, pp. 2477.

    Article  CAS  Google Scholar 

  45. E. Scheil: Metallforschung, 1947, vol. 2, p. 69.

    CAS  Google Scholar 

  46. S. Dong, E. Niyama, and K. Nazai: Iron Steel Inst. Jpn., 1995, vol. 35 (6), p. 730.

    CAS  Google Scholar 

  47. A. Jablonka, K. Harste, and K. Schwerdtfeger: Steel Res., 1991, vol. 62, p. 24.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Bealy, M., Fredriksson, H. Modeling of the peritectic reaction and macro-segregation in casting of low carbon steel. Metall Mater Trans B 27, 999–1014 (1996). https://doi.org/10.1007/s11663-996-0015-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-996-0015-x

Keywords

Navigation