Skip to main content
Log in

Residual stress and interfacial reaction of the electroplated Ni-Cu alloy under bump metallurgy in the flip-chip solder joint

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pure Ni, the Ni-Cu alloy, and pure Cu layers as the under bump metallurgy (UBM) for a flip-chip solder joint were deposited by electrolytic plating. For the pure Ni layer, residual stress can be controlled by adding a wetting agent and decreasing current density, and it is always under tensile stress. The Ni-Cu alloys of different Cu compositions from ∼20wt.%Cu to 100wt.%Cu were deposited with varying current density in a single bath. The residual stress was a strong function of current density and Cu composition. Decreasing current density and increasing Cu content simultaneously causes the residual stress of the metal layers to sharply decrease. For the pure Cu layer, the stress is compressive. The Cu layer acts as a cushion layer for the UBM. The residual stress of the UBM strongly depends on the fraction of the Cu cushion layer. Interfacial reaction of the UBM with Sn-3.5 wt.% Ag was studied. As the Cu contents of Ni-Cu alloys increased, the dissolution rate increased. Several different intermetallic compounds (IMCs) were found. The lattice constants of alloys and the IMC increase with increasing Cu contents because the larger Cu atoms substitute for the smaller Ni atoms in the crystallites. The Cu content of the IMC are strongly dependent on the composition of the alloys. Ball shear tests were done with different metal-layer schemes. The failure occurs through the IMC and solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.P. Atluri, R.V. Mahajan, P.R. Patel, D. Mallik, J. Tang, V.S. Wakharkar, G.M. Chrysler, C.P. Chiu, G.N. Choksi, and R.S. Viswanath, MRS Bull. 28, 21 (2003).

    Google Scholar 

  2. T. Shimura, Y. Kawasaki, Y. Ohashi, K. Shirakawa, T. Hirose, S. Aoki, H. Someta, K. Makiyama, and S. Yokokawa, Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp. (Piscataway, NJ: IEEE, 1998), pp. 25–28.

    Google Scholar 

  3. V.H. Ozguz and J. Yamaguchi, MRS Bull. 28, 35 (2003).

    Google Scholar 

  4. NCMS, Lead-Free Solder Project Final Report, NCMS Report 0401RE96 (Ann Arbor: MI: National Center for Manufacturing Sciences, 1997).

    Google Scholar 

  5. M.R. Harrison and J.H. Vincent, Proc. 12th Microelectronics and Packaging Conf.: IMAPS Europe (Cambridge, UK: IMAPS, 1999), pp. 98–106.

    Google Scholar 

  6. JEIDA, Report on Research and Development on Lead-Free Soldering (Tokyo: Japan Electronic Industry Development Association, 2000).

    Google Scholar 

  7. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  8. M. Abtew and G. Selva-duray, Mater. Sci. Eng. R 27, 95 (2001).

    Article  Google Scholar 

  9. J.H. Lau, Low Cost Flip Chip Technologies (New York: McGraw-Hill, 2000).

    Google Scholar 

  10. D.S. Patterson, P. Elenius, and J.A. Leal, “Wafer Bumping Technologies — A Comparative Analysis for Solder Deposition Processes and Assembly Considerations”, Kulicke & Soffa Technical Library, 2001, Web Site (www.kns.com).

  11. D.S. Patterson, “Solder Bumping Step by Step”, Kulicke & Soffa Technical Library, 2001, Web Site (www.kns.com).

  12. S.Y. Jang, J. Wolf, and K.W. Paik, J. Electron. Mater. 31, 478 (2002).

    CAS  Google Scholar 

  13. E.K. Yung and I. Turlik, IEEE Trans. CHMT 14, 549 (1991).

    CAS  Google Scholar 

  14. K.K. Yu and F. Tung, Proc. Electronic Manufacturing Technology Symp. (New York: IEEE, 1993), pp. 277–281.

    Book  Google Scholar 

  15. H. Ezawa, M. Miyata, and S. Honma, Proc. 50th Electronic Components Technology Conf. (Piscataway, NJ: IEEE, 2000), pp. 1095–1100.

    Google Scholar 

  16. R. Kiumi, J. Yoshioka, F. Kuriyama, N. Saito, and M. Shimoyama, Proc. 52nd Electronic Components Technology Conf. (Piscataway, NJ: IEEE, 2002), pp. 711–716.

    Book  Google Scholar 

  17. R.H. Esser, A. Dimoulas, N. Strifas, A. Christou, and N. Papanicolau, Microelectron. Reliab. 38, 1307 (1998).

    Article  Google Scholar 

  18. H. Han, R. Boudreau, and S.-S. Tan, Proc. 46th Electronic Components Technology Conf. (Piscataway, NJ: IEEE, 1996), pp. 963–966.

    Google Scholar 

  19. D. Manessis, R. Patzelt, A. Ostmann, R. Aschenbrenner, and H. Reichl, Microelectron. Reliab. 44, 797 (2004).

    Article  Google Scholar 

  20. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zhang, JOM 53, 28 (2001).

    CAS  Google Scholar 

  21. P.A. Totta and R.P. Sopher, IBM J. Res. Dev. 13, 226 (1969).

    Article  CAS  Google Scholar 

  22. G.Z. Pan, A.A. Liu, H.K. Kim, and K.N. Tu, Appl. Phys. Lett. 71, 2946 (1997).

    Article  CAS  Google Scholar 

  23. J.O.G. Parent and D.D.L. Chung, J. Mater. Sci. 23, 2564 (1988).

    Article  CAS  Google Scholar 

  24. P.L. Tu, Y.C. Chan, and J.K.L. Lai, IEEE Trans. CPMT B 20, 87 (1997).

    CAS  Google Scholar 

  25. W.G. Bader, Weld. Res. Suppl. Dec., 551s (1969).

  26. S.K. Kang and V. Ramachandran, Scripta Metall. 14, 421 (1980).

    Article  CAS  Google Scholar 

  27. P. Elenius, J. Leal, J. Ney, and D. Stepniak, Proc. 49th Electronic Components Technology Conf. (Piscataway, NJ: IEEE, 1999), pp. 260–265.

    Google Scholar 

  28. Y. Guo, S.M. Kuo, and C. Zhang, IEEE Trans. CPT 24, 655 (2001).

    Google Scholar 

  29. P. Elenius, Proc. 47th Electron. Components Technology Conf. (Piscataway, NJ: IEEE, 1997), pp. 248–253.

    Book  Google Scholar 

  30. Integrated Circuit Engineering Corp., IC Packaging Update 1999 (Scottsdale, AZ: Integrated Circuit Engineering Corp., 1999).

    Google Scholar 

  31. S.K. Ghosh, A.K. Grover, G.K. Dey, and M.K. Totlani, Surf. Coating Technol. 126, 48 (2000).

    Article  CAS  Google Scholar 

  32. E. Tóth-Kádár et al., J. Electrochem. Soc. 147, 3311 (2000).

    Article  Google Scholar 

  33. G.G. Stoney, Proc. R. Soc. London A 82, 172 (1909).

    CAS  Google Scholar 

  34. S. Basrour and L. Robert, Mater. Sci. Eng. A 288, 270 (2000).

    Article  Google Scholar 

  35. F.A. Lowenheim, Electroplating, 1st ed. (New York: McGraw-Hill, 1978).

    Google Scholar 

  36. J.K. Dennis and T.E. Such, Nickel and Chromium Plating, 3rd ed. (Cambridge, UK: Woodhead Pub., 1993).

    Google Scholar 

  37. A. Gangulee, Acta Metall. 22, 177 (1974).

    Article  CAS  Google Scholar 

  38. N. Pangarov and R. Pangarova, J. Electroanal. Chem. 91, 173 (1978).

    Article  CAS  Google Scholar 

  39. F. Spaepen, Acta Mater. 48, 31 (2000).

    Article  CAS  Google Scholar 

  40. T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen, and C.Y. Li, J. Electron. Mater. 29, 1194 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Kim, J.Y., Yu, J. et al. Residual stress and interfacial reaction of the electroplated Ni-Cu alloy under bump metallurgy in the flip-chip solder joint. J. Electron. Mater. 33, 948–957 (2004). https://doi.org/10.1007/s11664-004-0021-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0021-1

Key words

Navigation