Skip to main content
Log in

Thermoelectric Properties of Nanograined ZnO

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bulk ZnO with a grain size of 20 nm was successfully obtained by pulsed electric current sintering. The crystalline size was almost identical to that of the raw particles, because the sintering temperature was as low as 200°C. A pressure of 500 MPa effectively enhanced densification, leading to a relative density of >90% at 200°C. The small grain size led to a low thermal conductivity of 3 W/m K at room temperature, due to enhanced boundary scattering. The Seebeck coefficient was higher than that of micrograined ZnO with similar Ga doping (0.3 at.% Ga). However, the resistivity was increased by more than 1000 times. The temperature dependence of conductivity showed thermally activated conduction behavior, while that of micrograined ZnO exhibited metallic-like behavior. The thermoelectric properties suggest that a carrier trap in the nanograined ZnO hinders carrier transport. Surface modification of the ZnO nanoparticles by heat treatment in H2 resulted in observable photoluminescence which was quenched in the starting nanoparticles, and led to a decrease in the resistivity of the sintered bulk, which indicates that control of surface defects on the nanoparticles is crucial for enhancement of the thermoelectric properties of nanograined ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.E. Humphrey, M.F. O’Dwyer, and H. Linke, J. Phys. D Appl. Phys. 38, 2051 (2005).

    Article  CAS  ADS  Google Scholar 

  2. L.D. Hicks, T.C. Harman, X. Sum, and M.S. Dresselhaus, Phys. Rev. B 53, R10493 (1996).

    Article  CAS  ADS  Google Scholar 

  3. G. Chen, Phys. Rev. B 57, 14958 (1998).

    Article  CAS  ADS  Google Scholar 

  4. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  CAS  Google Scholar 

  5. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, and I. Terasaki, Phys. Rev. B 60, 10580 (1999).

    Article  CAS  ADS  Google Scholar 

  7. I.W. Chen and W.H. Wang, Nature 404, 168 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. X. Deng, X. Wang, H. Wen, A. Kang, Z. Gui, and L. Li, J. Am. Ceram. Soc. 89, 1059 (2006).

    Article  CAS  Google Scholar 

  9. M.W. Wolf and J.J. Martin, Phys. Status Solidi (a) 17, 215 (1973).

    Article  CAS  ADS  Google Scholar 

  10. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1996).

    Article  Google Scholar 

  11. H. Kaga, Y. Kinemuchi, S. Tanaka, A. Makiya, Z. Kato, K. Uematsu, and K. Watari, Jpn. J. Appl. Phys. 45, L1212 (2006).

    Article  CAS  ADS  Google Scholar 

  12. Y. Fujishiro, M. Miyata, M. Awano, and K. Maeda, J. Am. Ceram. Soc. 86, 2063 (2003).

    Article  CAS  Google Scholar 

  13. C.B. Vining, W. Laskow, J.O. Hanson, R.R. Van der Beck, and P.D. Gorsuch, J. Appl. Phys. 69, 4333 (1991).

    Article  CAS  ADS  Google Scholar 

  14. N. Soga and O.L. Anderson, J. Appl. Phys. 38, 2985 (1967).

    Article  CAS  ADS  Google Scholar 

  15. A.M. Toxen, Phys. Rev. 122, 450 (1961).

    Article  CAS  ADS  Google Scholar 

  16. E. Tomzig and R. Helbig, J. Lumines. 14, 403 (1976).

    CAS  ADS  Google Scholar 

  17. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    Article  CAS  ADS  Google Scholar 

  18. M. Anpo and Y. Kubokawa, J. Phys. Chem. 88, 5556 (1984).

    Article  CAS  Google Scholar 

  19. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kinemuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinemuchi, Y., Mikami, M., Kobayashi, K. et al. Thermoelectric Properties of Nanograined ZnO. J. Electron. Mater. 39, 2059–2063 (2010). https://doi.org/10.1007/s11664-009-1009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-1009-7

Keywords

Navigation