Skip to main content
Log in

Electro-Optical Characteristics of P+n In0.53Ga0.47As Hetero-Junction Photodiodes in Large Format Dense Focal Plane Arrays

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper is concerned with focal plane array (FPA) data and use of analytical and three-dimensional numerical simulation methods to determine the physical effects and processes limiting performance. For shallow homojunction P+n designs the temperature dependence of dark current for T < 300 K depends on the intrinsic carrier concentration of the In0.53Ga0.47As material, implying that the dominant dark currents are generation and recombination (G–R) currents originating in the depletion regions of the double layer planar heterostructure (DLPH) photodiode. In the analytical model differences from bulk G–R behavior are modeled with a G–R like perimeter-dependent shunt current conjectured to originate at the InP/InGaAs interface. In this description the fitting property is the effective conductivity, σ eff(T), in mho cm−1. Variation in the data suggests σ eff (300 K) values of 1.2 × 10−11–4.6 × 10−11 mho cm−1). Substrate removal extends the quantum efficiency (QE) spectral band into the visible region. However, dead-layer effects limit the QE to 10% at a wavelength of 0.5 μm. For starlight–no moon illumination conditions, the signal-to-noise ratio is estimated to be 50 at an operating temperature of 300 K. A major result of the 3D numerical simulation of the device is the prediction of a perimeter G–R current not associated with the properties of the metallurgical interface. Another is the prediction that for a junction positioned in the larger band gap InP cap layer the QE is bias-dependent and that a relatively large reverse bias ≥0.9 V is needed for the QE to saturate to the shallow homojunction value. At this higher bias the dark current is larger than the shallow homojunction value. The 3D numerical model and the analytical model agree in predicting and explaining the measured radiatively limited diffusion current originating at the n-side of the junction. The calculations of the area-dependent G–R current for the condition studied are also in agreement. Unique advantages of the 3D numerical simulation are the ability to mimic real device structures, achieve deeper understanding of the real physical effects associated with the various methods of junction formation, and predict how device designs will function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Vatsia, Research and Development Technical Report, 7023 (1972).

  2. B.M. Onat, W. Huang, N. Masaum, M. Lange, M.H. Ettenberg, and C. Dries, Proc. SPIE 6542, 65420L-1-9 (2007).

    Google Scholar 

  3. A.R. Wichman, R.E. De Wames, and E. Bellotti, Proc. SPIE 9070, 907003-1-21 (2014).

    Google Scholar 

  4. C.A. Grimbergen, Solid State Electron. 19, 1033 (1976).

    Article  Google Scholar 

  5. E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, J. Appl. Phys. 59, 15 (1986).

    Article  Google Scholar 

  6. R.E. DeWames, R.T. Littleton, C. Billman, J. Pellegrino, S. Horn, and R. Balcerak, Properties of In0.53Ga0.47As and Hg0.39Cd0.61Te P + n photodiodes for low light level Visible-Shortwave Imaging.” 2008 U.S. workshop on the Physics and Chemistry of II-VI materials, extended abstract, 227 (2008).

  7. R.E. DeWames, R.T. Littleton, R. Billman, J. Pellegrino, and S. Horn, Properties of In0.53Ga0.47As and Hg0.39Cd0.61Te P + n photodiodes for low light level Visible-Shortwave Imaging.” Presented at SPIE. DSS, Conference (7298) (2009).

  8. J.S. Blakemore, Semiconductor Statistics (New York: Dover Publications, 1987).

    Google Scholar 

  9. A. Zemel and M. Gallant, J. Appl. Phys. 64, 6552 (1988).

    Article  Google Scholar 

  10. R.K. Ahrenkiel, R. Ellington, S. Johnson, and M. Vanlass, Appl. Phys. Lett. 72, 3470 (1998).

    Article  Google Scholar 

  11. R. Fraenkel, D. Aronov, Y. Benney, E. Berkowicz, L. Bykov, Z. Calahorra, T. Fishman, A. Giladi, and E. Han, et al., Proc. SPIE 8353, 835305-1-10 (2012).

    Google Scholar 

  12. A. Rouvié, J.-L. Reverchon, O. Huet, A. Djedidi, J.A. Robo, J.P. Truffer, T. Bria, M. Pires, J. Decobert, and E. Costar, Proc. SPIE 8353, 835308-1-12 (2012).

    Google Scholar 

  13. J. Decobert and G. Patriarche, J. Appl. Phys. 92, 5749 (2002).

    Article  Google Scholar 

  14. J.A. Trezza, N. Masaum, and M. Ettenberg, Proc. SPIE 8012, 80121Y-1-12 (2011).

    Google Scholar 

  15. S.C. Choo, Solid State Electron. 11, 1069 (1968).

    Article  Google Scholar 

  16. G.M. Williams and R.E. DeWames, J. Electron. Mater. 24, 1239 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. DeWames.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeWames, R., Littleton, R., Witte, K. et al. Electro-Optical Characteristics of P+n In0.53Ga0.47As Hetero-Junction Photodiodes in Large Format Dense Focal Plane Arrays. J. Electron. Mater. 44, 2813–2822 (2015). https://doi.org/10.1007/s11664-015-3706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3706-8

Keywords

Navigation