Skip to main content
Log in

Studies on the Effect of Temperature on Electroluminescence, Current–Voltage, and Carrier Lifetimes Characteristics in a InGaN/Sapphire Purple Light Emitting Diode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this report, we have measured electroluminescence (El), current–voltage, and effective carrier lifetime characteristics in a InGaN/Sapphire purple light emitting diode (UV3TZ-395-15) in the temperature range from 350 K to 77 K. The semiconductor rate equations have been employed to analyse the light–current data to determine the relation of radiative efficiency (η r) of the device with injection current at different temperatures, which is found to reach nearly 100% at 77 K with 20 mA current. The same analysis simultaneously leads to an evaluation of the non-radiative carrier lifetime (τ nr) of the device and its temperature dependence. Next, using the data on voltage gradient obtained from the open circuit voltage decay (OCVD) process, as well as those of ideality factor from the current–voltage characteristics, measurement the variations of the effective carrier lifetime (τ eff) with injection current at different temperatures have been evaluated. From the values of τnr and τeff , we have calculated the temperature dependence of the radiative lifetime (τ r) of carriers. Using the values of lifetimes it is shown that the internal quantum efficiency (η i) of the diode increases with lowering of temperature and reaches its maximum at about 120 K. Finally, this comprehensive study, apart from being highly useful in various optoelectronic applications, contributes to clarify our understanding of the physical processes at work in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Jiang, H. Lu, D.J. Chen, F.F. Ren, D.W. Yan, R. Zhang, and Y.D. Zheng, Chin. Phys. B 22, 047805 (2013).

    Article  Google Scholar 

  2. http://ufdc.ufl.edu/UF00100857/00001/1j. Accessed 11 Dec 2015)

  3. D.M. Artemiev, T.S. Orlona, V.E. Bougrov, M.A. Odnoblyudov, and A.E. Romanov, J. Electron. Mater. 44, 1287 (2015).

    Article  Google Scholar 

  4. C.L. Reynolds and A. Patel, J. Appl. Phys. 103, 086102 (2008).

    Article  Google Scholar 

  5. G.B. Rent, H. Summers, P. Blood, R. Perks, and D. Bour, Proc SPIE 4283, 78 (2001).

    Article  Google Scholar 

  6. C.H. Wang, J.R. Chen, C.H. Chiu, H.C. Kuo, Y.L. Li, T.C. Lu, and S.C. Wang, IEEE Photon. Tech. Lett. 22, 236 (2010).

    Article  Google Scholar 

  7. A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Appl. Phys. Lett. 79, 3723 (2001).

    Article  Google Scholar 

  8. A. De, K.K. Nagaraja, M. Tangi, and S.M. Shivaprasad, Mater. Res. Express 1, 035019 (2014).

    Article  Google Scholar 

  9. T. Reimer, I. Paulowicz, R. Roder, S. Kaps, O. Lupan, S. Chemnitz, W. Benecke, C. Ronning, R. Adelung, Y.K. Mishra, and A.C.S. Appl, Mater. Interfaces 6, 7806 (2014).

    Article  Google Scholar 

  10. O. Lupan, T. Pauporte, B. Viana, I.M. Tiginyanu, V.V. Ursaki, R. Cortes, and A.C.S. Appl, Mater. Interfaces 2, 2083 (2010).

    Article  Google Scholar 

  11. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, and R. Adelung, Part. Part. Syst. Charact. 30, 775 (2013).

    Article  Google Scholar 

  12. H.Y. Ryu, K.H. Ha, J.H. Chae, K.S. Kim, J.K. Son, O.H. Nam, Y.J. Park, and J.I. Shim, Appl. Phys. Lett. 89, 171106 (2006).

    Article  Google Scholar 

  13. L. Riuttanen, P. Kivisaari, N. Mantyoja, J. Oksanen, M. Ali, S. Suihkonen, and M. Sopanen, Phys. Status Solidi C 10, 327 (2013).

    Article  Google Scholar 

  14. N.B. Manik, A.N. Basu, and S.C. Mukherjee, Cryogenics 40, 341 (2000).

    Article  Google Scholar 

  15. P. Dalapati, N.B. Manik, and A.N. Basu, Front. Optoelectron. 7, 501 (2014).

    Article  Google Scholar 

  16. P. Dalapati, N.B. Manik, and A.N. Basu, Journal of Semiconductors 34, 092001 (2013).

    Article  Google Scholar 

  17. V.K. Khanna, Prog. Quantum Electron. 29, 59 (2005).

    Article  Google Scholar 

  18. H.W. Huang, J.T. Chu, C.C. Kao, T.H. Hseuh, T.C. Lu, H.C. Kuo, S.C. Wang, and C.C. Yu, Nanotechnology 16, 1844 (2005).

    Article  Google Scholar 

  19. M.H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).

    Article  Google Scholar 

  20. H. Li, T.C. Newell, G.T. Liu, A. Stink, K. Malloy, and L.F. Lester, Lasers and Electro-Optics Society 2000 Annual Meeting 1, 376 (2000) (doi: 10.1109/LEOS.2000.890835) is available through the internet at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=890835. Accessed 11 Dec 2015

  21. A. Hangleiter, D. Fuhrmann, M. Grewe, F. Hitzel, G. Klewer, S. Lahmann, C. Netzel, N. Riedel, and U. Rossow, Phys. Status Solidi A 201, 2809 (2004).

    Google Scholar 

  22. C. Huh, W.J. Schaff, L.F. Eastman, S.J. Park, and I.E.E.E. Elec, Dev. Lett. 25, 61 (2004).

    Article  Google Scholar 

  23. A. Dmitriev and A. Oruzheinikov, J. Appl. Phys. 86, 3241 (1999).

    Article  Google Scholar 

  24. T.H. Gfroerer, L.P. Priestley, M.F. Fairleyb, and M.W. Wanlass, J. Appl. Phys. 94, 1738 (2003).

    Article  Google Scholar 

  25. http://course.ee.ust.hk/elec509/notes/Lect11-semiconductor%20lasers%20and%20light-emitting%20diodes%282%29.pdf. Accessed 11 Dec 2015

  26. Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Saijou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, Phys. Stat. Sol. A183, 41 (2001).

    Article  Google Scholar 

  27. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-772-compound-semiconductor-devices- spring-2003/lecture-notes/Lecture18v2.pdf. Accessed 11 Dec 2015

  28. P. Dalapati, N.B. Manik, and A.N. Basu, Opt. Quant. Electron. 47, 1227 (2015).

    Article  Google Scholar 

  29. D. Zhu, J. Xu, A.N. Noemaun, J.K. Kim, E.F. Schubert, M.H. Crawford, and D.D. Koleske, Appl. Phys. Lett. 94, 081113 (2009).

    Article  Google Scholar 

  30. J.M. Shah, Y.L. Li, T. Gessmann, and E.F. Schubert, J. Appl. Phys. 94, 2627 (2003).

    Article  Google Scholar 

  31. T. Pisarkiewicz, Optoelectron. Rev. 12, 33 (2004).

    Google Scholar 

  32. A. Vishnoi, R. Gopal, R. Dwivedi, and S.K. Srivastava, Solid State Electron. 33, 41l (1990).

    Article  Google Scholar 

  33. F. Sandoval, J.R.D. Diego, and I. Izpura, Int. J. Electron. 67, 853 (1989).

    Article  Google Scholar 

  34. P. Asbeck, J. Appl. Phys. 48, 820 (1977).

    Article  Google Scholar 

  35. J. Piprek and S. Li, GaN-based Light-Emitting Diodes, is available through the internet at http://www.nusod.org/ piprek/piprek05ch10.pdf. Accessed 11 Dec 2015

  36. S.W. Feng and J.I. Chyi, J. Electrochem. Soc. 159, H225 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Defence Research Development Organization (DRDO), India, for financial assistance, and one of the authors, P. Dalapati is thankful to DRDO for the award of a research fellowship. M. Ghorai’s technical assistance is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabin Baran Manik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalapati, P., Manik, N.B. & Basu, A.N. Studies on the Effect of Temperature on Electroluminescence, Current–Voltage, and Carrier Lifetimes Characteristics in a InGaN/Sapphire Purple Light Emitting Diode. J. Electron. Mater. 45, 2683–2691 (2016). https://doi.org/10.1007/s11664-015-4311-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4311-6

Keywords

Navigation