Skip to main content
Log in

Analysis of IVT Characteristics of Au/n-InP Schottky Barrier Diodes with Modeling of Nanometer-Sized Patches at Low Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The current–voltage (IV) characteristics of inhomogeneous Au/n-InP Schottky barrier (SB) diodes have been investigated in the temperature range of 100 K to 300 K, and detailed numerical simulation study carried out using a physical device simulator. The experimental IV curves for the diode in both forward- and reverse-bias conditions were fit to explain the current transport mechanisms at low temperature. Tunneling current flows through the native oxide and nanometer-sized patches embedded at the Au/n-InP interface. These patches result in a lower (local) barrier height which is temperature dependent and responsible for the diode current behaviors in the low-bias regime. The patch area is on the order of one-millionth of the total diode area, and the SB is between 0.01 eV and 0.3 eV in the patch region. The simulation results are in good agreement with the measurements in the whole explored current range extending over six orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.H. Holloway and G.E. McGuire, Handbook of Compound Semiconductors: Growth, Processing, Characterization, and Devices (New Jersey: Noyes, 1995).

    Google Scholar 

  2. C.W. Wilmsen, Physics and Chemistry of III–V Compound Semiconductor Interfaces (New York: Plenum, 1985).

    Book  Google Scholar 

  3. H. Kazemi, K. Shinohara, G. Nagy, W. Ha, B. Lail, E. Grossman, G. Zummo, W.R. Folks, J. Alda, and G. Boreman, in SPIE Infrared Technology and Application XXXIII Proceedings (2007) pp. 1–4

  4. H.I. Chen, Y.I. Chou, and C.Y. Chu, Sens. Actuators B Chem. 85, 10 (2002).

    Article  Google Scholar 

  5. R.W.H. Engelmann and C.A. Liechti, IEEE Trans. Electron Dev. 24, 1288 (1977).

    Article  Google Scholar 

  6. M.S. Pratap Reddy, K. Sreenu, V.R. Reddy, and C. Park, J. Mater. Sci.: Mater. Electron. 28, 4847 (2017).

    Google Scholar 

  7. H. Cetin and E. Ayyıldız, Phys. B 394, 93 (2007).

    Article  Google Scholar 

  8. H. Cetin and E. Ayyildiz, Appl. Surf. Sci. 253, 5961 (2007).

    Article  Google Scholar 

  9. E. Ayyildiz, H. Cetin, and Z.J. Horvath, Appl. Surf. Sci. 252, 1153 (2005).

    Article  Google Scholar 

  10. F.E. Cimilli, M. Saglam, H. Efeoglu, and A. Turut, Phys. B 404, 1558 (2009).

    Article  Google Scholar 

  11. F.E. Cimilli, H. Efeoglu, M. Saglam, and A. Turut, J. Mater. Sci.: Mater. Electron. 20, 105 (2009).

    Google Scholar 

  12. F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, and F.G. Della Corte, Jpn. J. Appl. Phys. 56, 094301 (2017).

    Article  Google Scholar 

  13. K. Zeghdar, L. Dehimi, F. Pezzimenti, S. Rao, and F. Della Corte, Jpn. J. Appl. Phys. 58, 014002 (2019).

    Article  Google Scholar 

  14. K. Ejderha, N. Yildirim, A. Turut, and B. Abay, Superlattices Microstruct. 47, 241 (2010).

    Article  Google Scholar 

  15. K. Ejderha, N. Yıldırım, B. Abay, and A. Turut, J. Alloys Compd. 484, 870 (2009).

    Article  Google Scholar 

  16. J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  Google Scholar 

  17. R.T. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  Google Scholar 

  18. M.S. Gorji and K.Y. Cheong, Crit. Rev. Solid State 40, 1 (2015).

    Article  Google Scholar 

  19. M. Yeganeh, S. Rahmatallahpur, and R.K. Mamedov, Mater. Sci. Semicond. Process. 14, 266 (2011).

    Article  Google Scholar 

  20. A. Fritah, A. Saadoune, L. Dehimi, and B. Abay, Philos. Mag. 96, 2009 (2016).

    Article  Google Scholar 

  21. M. Soylu and B. Abay, Microelectron. Eng. 86, 88 (2009).

    Article  Google Scholar 

  22. F. Bouzid, L. Dehimi, and F. Pezzimenti, J. Electron. Mater. 46, 6563 (2017).

    Article  Google Scholar 

  23. Y. Marouf, L. Dehimi, F. Bouzid, F. Pezzimenti, and F.G. Della Corte, Optik 163, 22 (2018).

    Article  Google Scholar 

  24. F. Pezzimenti and F.G. Della Corte, in Proceedings of Mediterranean Electrotechnical Conference on MELECON (2010), pp. 1129–1134

  25. F. Pezzimenti, IEEE Trans. Electron Dev. 60, 1404 (2013).

    Article  Google Scholar 

  26. M.L. Megherbi, F. Pezzimenti, L. Dehimi, M.A. Saadoune, and F.G. Della Corte, IEEE Trans. Electron Dev. 65, 3371 (2018).

    Article  Google Scholar 

  27. F.G. Della Corte, G. De Martino, F. Pezzimenti, G. Adinolfi, and G. Graditi, IEEE Trans. Electron Dev. 68, 3352 (2018).

    Article  Google Scholar 

  28. G. De Martino, F. Pezzimenti, F.G. Della Corte, G. Adinolfi, and G. Graditi, in Proceedings of IEEE Conference on Ph.D. Research in Microelectronics and ElectronicsPRIME (2017), pp. 221–224

  29. F. Pezzimenti, L.F. Albanese, S. Bellone, and F.G. Della Corte, in Proceedings of IEEE International Conference on Bipolar/BiCMOS Circuits and Technology Meeting (2009), pp. 214–217

  30. F.G. Della Corte, F. Pezzimenti, S. Bellone, and R. Nipoti, Mater. Sci. Forum 679, 621 (2011).

    Article  Google Scholar 

  31. M.L. Megherbi, F. Pezzimenti, L. Dehimi, A. Saadoune, and F.G. Della Corte, J. Electron. Mater. 47, 1414 (2018).

    Article  Google Scholar 

  32. P.A. Anderson, Phys. Rev. 115, 553 (1959).

    Article  Google Scholar 

  33. H. Cetin and E. Ayyildiz, Phys. B 405, 559 (2010).

    Article  Google Scholar 

  34. D. Korucu, A. Turut, and H. Efeoglu, Phys. B 414, 35 (2013).

    Article  Google Scholar 

  35. A. Ferhat Hamida, Z. Ouennoughi, A. Sellai, R. Weiss, and H. Ryssel, Semicond. Sci. Technol. 23, 1 (2008).

    Google Scholar 

  36. M. Gulnahar, Metall. Mater. Trans. A 46, 3960 (2015).

    Article  Google Scholar 

  37. D. Korucu and T.S. Mammadov, J. Optoelectron. Adv. Mater. 14, 41 (2012).

    Google Scholar 

  38. P.M. Gammon, A. Pérez-Tomás, V.A. Shah, O. Vavasour, E. Donchev, J.S. Pang, M. Myronov, C.A. Fisher, M.R. Jennings, D.R. Leadley, and P.A. Mawby, J. Appl. Phys. 114, 1 (2013).

    Article  Google Scholar 

  39. H. Haick, J.P. Pelz, T. Ligonzo, M. Ambrico, D. Cahen, W. Cai, C. Marginean, C. Tivarus, and R.T. Tung, Phys. Status Solidi A 203, 3438 (2006).

    Article  Google Scholar 

  40. H.J. Im, Y. Ding, and J.P. Pelz, Phys. Rev. B 64, 1 (2001).

    Article  Google Scholar 

  41. S. Anand, S.B. Carlsson, K. Deppert, L. Montelius, and L. Samuelson, J. Vac. Sci. Technol., B 14, 2794 (1996).

    Article  Google Scholar 

  42. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pezzimenti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritah, A., Dehimi, L., Pezzimenti, F. et al. Analysis of IVT Characteristics of Au/n-InP Schottky Barrier Diodes with Modeling of Nanometer-Sized Patches at Low Temperature. J. Electron. Mater. 48, 3692–3698 (2019). https://doi.org/10.1007/s11664-019-07129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07129-2

Keywords

Navigation