Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2011

01.02.2011

Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicles

verfasst von: M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B. A. Cheeseman

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To respond to the advent of more lethal threats, recently designed aluminum-armor-based military-vehicle systems have resorted to an increasing use of higher strength aluminum alloys (with superior ballistic resistance against armor piercing (AP) threats and with high vehicle-light weighing potential). Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies and in-order to obtain high-quality welds, solid-state joining technologies such as Friction stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military vehicle structures is not straight forward and entails a comprehensive multi-step approach. One such (three-step) approach is developed in the present work. Within the first step, experimental and computational techniques are utilized to determine the optimal tool design and the optimal FSW process parameters which result in maximal productivity of the joining process and the highest quality of the weld. Within the second step, techniques are developed for the identification and qualification of the optimal weld joint designs in different sections of a prototypical military vehicle structure. In the third step, problems associated with the fabrication of a sub-scale military vehicle test structure and the blast survivability of the structure are assessed. The results obtained and the lessons learned are used to judge the potential of the current approach in shortening the development time and in enhancing reliability and blast survivability of military vehicle structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, “Friction Stir Butt Welding,” International Patent Application No. PCT/GB92/02203, 1991 W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, “Friction Stir Butt Welding,” International Patent Application No. PCT/GB92/02203, 1991
2.
Zurück zum Zitat “Armor Plate, Aluminum Alloy, Weldable 5083 and 5456,” MIL-DTL-46027J, U.S. Department of Defense, Washington DC, August 1992 “Armor Plate, Aluminum Alloy, Weldable 5083 and 5456,” MIL-DTL-46027J, U.S. Department of Defense, Washington DC, August 1992
3.
Zurück zum Zitat A. Cho, Alcan Rolled Products, Ravenswood, WV, USA, Private Communication, June 2009 A. Cho, Alcan Rolled Products, Ravenswood, WV, USA, Private Communication, June 2009
4.
Zurück zum Zitat “Armor Plate, Aluminum Alloy, 7039,” MIL-DTL-46063H, U.S. Department of Defense, Washington DC, December 1992 “Armor Plate, Aluminum Alloy, 7039,” MIL-DTL-46063H, U.S. Department of Defense, Washington DC, December 1992
5.
Zurück zum Zitat “Aluminum Alloy Armor, 2219, Rolled Plate and Die Forged Shapes,” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, August 1998 “Aluminum Alloy Armor, 2219, Rolled Plate and Die Forged Shapes,” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, August 1998
6.
Zurück zum Zitat “Aluminum Alloy Armor Rolled Plate (1/2 to 4 Inches Thick), Weldable (Alloy 2519),” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, February 2000 “Aluminum Alloy Armor Rolled Plate (1/2 to 4 Inches Thick), Weldable (Alloy 2519),” MIL-DTL-46118E, U.S. Department of Defense, Washington DC, February 2000
7.
Zurück zum Zitat H. Liu, H. Fulii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir Welded Joints of 6061-T6 Aluminium Alloy, J. Mater. Sci. Lett., 2003, 22, p 1061–1063CrossRef H. Liu, H. Fulii, M. Maeda, and K. Nogi, Tensile Properties and Fracture Locations of Friction-Stir Welded Joints of 6061-T6 Aluminium Alloy, J. Mater. Sci. Lett., 2003, 22, p 1061–1063CrossRef
8.
Zurück zum Zitat W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59, p 3315–3318CrossRef W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59, p 3315–3318CrossRef
9.
Zurück zum Zitat W.M. Thomas and E.D. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18, p 269–273CrossRef W.M. Thomas and E.D. Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., 1997, 18, p 269–273CrossRef
10.
Zurück zum Zitat J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminum, Acta Mater., 2003, 51, p 713–729CrossRef J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminum, Acta Mater., 2003, 51, p 713–729CrossRef
11.
Zurück zum Zitat O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32, p 1189–1200CrossRef O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys, Metall. Mater. Trans. A, 2001, 32, p 1189–1200CrossRef
12.
Zurück zum Zitat M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metall. Mater. Trans. A, 1998, 29, p 1955–1964CrossRef M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel, Properties of Friction-Stir-Welded 7075 T651 Aluminum, Metall. Mater. Trans. A, 1998, 29, p 1955–1964CrossRef
13.
Zurück zum Zitat C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum, Scripta Mater., 1997, 36, p 69–75CrossRef C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton, Effect of Friction Stir Welding on Microstructure of 7075 Aluminum, Scripta Mater., 1997, 36, p 69–75CrossRef
14.
Zurück zum Zitat G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, and F.R. Vega, Microstructural Aspects of the Friction-Stir-Welding of 6061-T6 Aluminum, Scripta Mater., 1997, 37, p 355–361CrossRef G. Liu, L.E. Murr, C.S. Niou, J.C. McClure, and F.R. Vega, Microstructural Aspects of the Friction-Stir-Welding of 6061-T6 Aluminum, Scripta Mater., 1997, 37, p 355–361CrossRef
15.
Zurück zum Zitat K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scripta Mater., 2000, 43, p 743–748CrossRef K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scripta Mater., 2000, 43, p 743–748CrossRef
16.
Zurück zum Zitat K. Masaki, Y.S. Sato, M. Maeda, and H. Kokawa, Experimental Simulation of Recrystallized Microstructure in Friction Stir Welded Al Alloy Using a Plane-Strain Compression Test, Scripta Mater., 2008, 58, p 355–360CrossRef K. Masaki, Y.S. Sato, M. Maeda, and H. Kokawa, Experimental Simulation of Recrystallized Microstructure in Friction Stir Welded Al Alloy Using a Plane-Strain Compression Test, Scripta Mater., 2008, 58, p 355–360CrossRef
17.
Zurück zum Zitat J.H. Cho, D.E. Boyce, and P.R. Dawson, Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel, Mater. Sci. Eng. A, 2005, 398, p 146–163CrossRef J.H. Cho, D.E. Boyce, and P.R. Dawson, Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel, Mater. Sci. Eng. A, 2005, 398, p 146–163CrossRef
18.
Zurück zum Zitat M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., accepted for publication, July 2009. doi:10.1007/s11665-009-9536-1 M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., accepted for publication, July 2009. doi:10.​1007/​s11665-009-9536-1
19.
Zurück zum Zitat W.M. Thomas, E.D. Nicholas, J.C. NeedHam, M.G. Murch, P. Templesmith, and C.J. Dawes, “Friction Stir Welding,” International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8, 1991 W.M. Thomas, E.D. Nicholas, J.C. NeedHam, M.G. Murch, P. Templesmith, and C.J. Dawes, “Friction Stir Welding,” International Patent Application No. PCT/GB92102203 and Great Britain Patent Application No. 9125978.8, 1991
20.
Zurück zum Zitat R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50, p 1–78CrossRef R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50, p 1–78CrossRef
21.
Zurück zum Zitat H.W. Zhang, Z. Zhang, and J.T. Chen, The Finite Element Simulation of the Friction Stir Welding Process, Mater. Sci. Eng. A, 2005, 403, p 340–348CrossRef H.W. Zhang, Z. Zhang, and J.T. Chen, The Finite Element Simulation of the Friction Stir Welding Process, Mater. Sci. Eng. A, 2005, 403, p 340–348CrossRef
22.
Zurück zum Zitat A.J. Ramirez and M.C. Juhas, Microstructural Evolution in Ti-6Al-4V Friction Stir Welds, Mater. Sci. Forum, 2003, 426–432, p 2999–3004CrossRef A.J. Ramirez and M.C. Juhas, Microstructural Evolution in Ti-6Al-4V Friction Stir Welds, Mater. Sci. Forum, 2003, 426–432, p 2999–3004CrossRef
23.
Zurück zum Zitat H.G. Salem, A.P. Reynolds, and J.S. Lyons, Microstructure and Retention of Superplasticity of Friction Stir Welded Superplastic 2095 Sheet, Scripta Mater., 2002, 46, p 337–342CrossRef H.G. Salem, A.P. Reynolds, and J.S. Lyons, Microstructure and Retention of Superplasticity of Friction Stir Welded Superplastic 2095 Sheet, Scripta Mater., 2002, 46, p 337–342CrossRef
24.
Zurück zum Zitat H.J. Liu, Y.C. Chen, and J.C. Feng, Effect of Zigzag Line on the Mechanical Properties of Friction Stir Welded Joints of an Al-Cu Alloy, Scripta Mater., 2006, 55, p 231–234CrossRef H.J. Liu, Y.C. Chen, and J.C. Feng, Effect of Zigzag Line on the Mechanical Properties of Friction Stir Welded Joints of an Al-Cu Alloy, Scripta Mater., 2006, 55, p 231–234CrossRef
25.
Zurück zum Zitat Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Friction Stir Processing on the microstructure of Cast A356 Aluminum, Mater. Sci. Eng. A, 2006, 433, p 269–278CrossRef Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Friction Stir Processing on the microstructure of Cast A356 Aluminum, Mater. Sci. Eng. A, 2006, 433, p 269–278CrossRef
26.
Zurück zum Zitat M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., accepted for publication, September 2009. doi:10.1243/09544054JEM1750 M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., accepted for publication, September 2009. doi:10.​1243/​09544054JEM1750
27.
Zurück zum Zitat G. Campbell and T. Stotler, Friction-stir Welding of Armor Grade Aluminum Plate, Welding J., 1999, 78(12), p 4547 G. Campbell and T. Stotler, Friction-stir Welding of Armor Grade Aluminum Plate, Welding J., 1999, 78(12), p 4547
28.
Zurück zum Zitat M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical properties and Residual Stresses as a function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801CrossRef M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical properties and Residual Stresses as a function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51, p 4791–4801CrossRef
29.
Zurück zum Zitat D. Allehaux and F. Marie, Mechanical and Corrosion Behavior of the 2139 Aluminum-Copper-Alloy Welded by the Friction Stir Welding Using the Bobbin Tool Technique, Mater. Sci. Forum, 2006, 519–521, p 1131–1138CrossRef D. Allehaux and F. Marie, Mechanical and Corrosion Behavior of the 2139 Aluminum-Copper-Alloy Welded by the Friction Stir Welding Using the Bobbin Tool Technique, Mater. Sci. Forum, 2006, 519–521, p 1131–1138CrossRef
30.
Zurück zum Zitat Y.S. Sato, S. Hwan, C. Park, and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A, 2001, 32A, p 3033–3042CrossRef Y.S. Sato, S. Hwan, C. Park, and H. Kokawa, Microstructural Factors Governing Hardness in Friction-Stir Welds of Solid-Solution-Hardened Al Alloys, Metall. Mater. Trans. A, 2001, 32A, p 3033–3042CrossRef
31.
Zurück zum Zitat L. Fratini, G. Buffa, and D. Palmeri, Using a Neural Network for Predicting the Average Grain-Size in Friction Stir Welding Processes, Comput. Struct., 2009, 87, p 1166–1174CrossRef L. Fratini, G. Buffa, and D. Palmeri, Using a Neural Network for Predicting the Average Grain-Size in Friction Stir Welding Processes, Comput. Struct., 2009, 87, p 1166–1174CrossRef
32.
Zurück zum Zitat “Military Standard for Welding of Aluminum Alloy Armor,” MIL-STD-1946A, U.S. Department of Defense, Washington DC, January 1990 “Military Standard for Welding of Aluminum Alloy Armor,” MIL-STD-1946A, U.S. Department of Defense, Washington DC, January 1990
33.
Zurück zum Zitat A. Wenzel and J.M. Hennessey, Analysis and Measurements of the Response of Armor Plates to Land Mine Attacks, Proceedings of the Army Symposium on Solid Mechanics, Warren, Michigan, July 1972, p 114–128 A. Wenzel and J.M. Hennessey, Analysis and Measurements of the Response of Armor Plates to Land Mine Attacks, Proceedings of the Army Symposium on Solid Mechanics, Warren, Michigan, July 1972, p 114–128
Metadaten
Titel
Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicles
verfasst von
M. Grujicic
G. Arakere
B. Pandurangan
A. Hariharan
C.-F. Yen
B. A. Cheeseman
Publikationsdatum
01.02.2011
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2011
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-010-9650-0

Weitere Artikel der Ausgabe 1/2011

Journal of Materials Engineering and Performance 1/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.