Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2012

01.07.2012

A Model to Predict the Resulting Grain Size of Friction-Stir-Processed AZ31 Magnesium Alloy

verfasst von: Basil M. Darras

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the most important issues that hinder the widespread use of friction stir (FS) processing, an effective microstructural modification technique, is the lack of accurate predictive tools that enable the selection of suitable processing parameters to obtain the desired grain structure. In this study, a model that is capable of predicting the resulting average grain size of a FS-processed material from process parameters is presented. The proposed model accounts for both dynamic recrystallization and grain growth. Several AZ31 magnesium samples were FS processed in different combinations of rotational and translational speeds. The thermal fields and resulting average grain size were measured, and the effective strain rates were approximated analytically. The results show that the proposed model is capable of predicting the resulting grain size of FS-processed materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temlesmith, and C.J. Dawes, GB Patent Application No. 9125978.8, December 1991 W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temlesmith, and C.J. Dawes, GB Patent Application No. 9125978.8, December 1991
2.
Zurück zum Zitat R.S. Mishra and M. Mahoney, Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Superplasticity in Commercial Alloys, Mater. Sci. Forum, 2001, 357–359, p 2869–2877 R.S. Mishra and M. Mahoney, Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Superplasticity in Commercial Alloys, Mater. Sci. Forum, 2001, 357–359, p 2869–2877
3.
Zurück zum Zitat Y. Kwon, N. Saito, and I. Shigematsu, Friction Stir Process as a New Manufacturing Technique of Ultrafine Grained Aluminum Alloy, J. Mater. Sci. Lett., 2001, 21, p 1473–1476CrossRef Y. Kwon, N. Saito, and I. Shigematsu, Friction Stir Process as a New Manufacturing Technique of Ultrafine Grained Aluminum Alloy, J. Mater. Sci. Lett., 2001, 21, p 1473–1476CrossRef
4.
Zurück zum Zitat M. Khraisheh, B. Darras, P. Kalu, M. Adams-Hughes, and N. Chandra, Correlation Between the Microstructure and Forces Generated during Friction Stir Processing of AA5052, Mater. Sci. Forum, 2005, 475–479, p 3043–3046CrossRef M. Khraisheh, B. Darras, P. Kalu, M. Adams-Hughes, and N. Chandra, Correlation Between the Microstructure and Forces Generated during Friction Stir Processing of AA5052, Mater. Sci. Forum, 2005, 475–479, p 3043–3046CrossRef
5.
Zurück zum Zitat H. Park, T. Kimura, T. Murakami, and Y. Nagano, Microstructures and Mechanical Properties of Friction Stir Welds of 60% Cu-40% Zn Copper Alloy, Mater. Sci. Eng. A, 2004, 371, p 160–169CrossRef H. Park, T. Kimura, T. Murakami, and Y. Nagano, Microstructures and Mechanical Properties of Friction Stir Welds of 60% Cu-40% Zn Copper Alloy, Mater. Sci. Eng. A, 2004, 371, p 160–169CrossRef
6.
Zurück zum Zitat J. Su, T.W. Nelson, and C.J. Sterling, Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys, Scripta Mater., 2005, 52, p 135–140CrossRef J. Su, T.W. Nelson, and C.J. Sterling, Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys, Scripta Mater., 2005, 52, p 135–140CrossRef
7.
Zurück zum Zitat L. Commin, M. Dumont, J. Masse, and L. Barrallier, Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters, Acta Mater., 2009, 57, p 326–334CrossRef L. Commin, M. Dumont, J. Masse, and L. Barrallier, Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters, Acta Mater., 2009, 57, p 326–334CrossRef
8.
Zurück zum Zitat P. Ferro and F. Bonollo, A Semianalytical Thermal Model for Fiction Stir Welding, Metall. Mater. Trans. A, 2010, 41A, p 440–448CrossRef P. Ferro and F. Bonollo, A Semianalytical Thermal Model for Fiction Stir Welding, Metall. Mater. Trans. A, 2010, 41A, p 440–448CrossRef
9.
Zurück zum Zitat C. Hamilton, A. Sommers, and S. Dymek, A Thermal Model of Friction Stir Welding Applied to Sc-Modified Al-Zn-Mg-Cu Alloy Extrusions, Int. J. Mach. Tool. Manuf., 2009, 49, p 230–238CrossRef C. Hamilton, A. Sommers, and S. Dymek, A Thermal Model of Friction Stir Welding Applied to Sc-Modified Al-Zn-Mg-Cu Alloy Extrusions, Int. J. Mach. Tool. Manuf., 2009, 49, p 230–238CrossRef
10.
Zurück zum Zitat P. Heurtier, C. Desrayaud, and F. Montheillet, A Thermomechanical Analysis of the Friction Stir Welding Process, Mater. Sci. Forum, 2002, 396–402, p 1537–1542CrossRef P. Heurtier, C. Desrayaud, and F. Montheillet, A Thermomechanical Analysis of the Friction Stir Welding Process, Mater. Sci. Forum, 2002, 396–402, p 1537–1542CrossRef
11.
Zurück zum Zitat G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A Continuum Based FEM Model for Friction Stir Welding-Model Development, Mater. Sci. Eng. A, 2006, 419, p 389–396CrossRef G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A Continuum Based FEM Model for Friction Stir Welding-Model Development, Mater. Sci. Eng. A, 2006, 419, p 389–396CrossRef
12.
Zurück zum Zitat C. Chang, C. Lee, and J. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scripta Mater., 2004, 51, p 509–514CrossRef C. Chang, C. Lee, and J. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scripta Mater., 2004, 51, p 509–514CrossRef
13.
Zurück zum Zitat H. Schmidt, J. Hattel, and J. Wert, An Analytical Model for the Heat Generation in Friction Stir Welding, Model. Simul. Mater. Sci. Eng., 2004, 12, p 143–157CrossRef H. Schmidt, J. Hattel, and J. Wert, An Analytical Model for the Heat Generation in Friction Stir Welding, Model. Simul. Mater. Sci. Eng., 2004, 12, p 143–157CrossRef
14.
Zurück zum Zitat W. Arbegast, Modeling Friction Stir Joining as a Metal Working Process, Proceeding of Hot Deformation of Aluminum Alloys III, TMS, 2003, p 313–327 W. Arbegast, Modeling Friction Stir Joining as a Metal Working Process, Proceeding of Hot Deformation of Aluminum Alloys III, TMS, 2003, p 313–327
15.
Zurück zum Zitat J. Schneider and A. Nunes, Thermo-Mechanical Processing in Friction Stir Welds, Proceeding of Friction Stir Welding and Processing II, TMS, 2003, p 43–51 J. Schneider and A. Nunes, Thermo-Mechanical Processing in Friction Stir Welds, Proceeding of Friction Stir Welding and Processing II, TMS, 2003, p 43–51
16.
Zurück zum Zitat P. Ulysse, Three-Dimensional Modeling of Friction Stir-Welding Process, Int. J. Mach. Tool. Manuf., 2002, 42, p 1549–1557CrossRef P. Ulysse, Three-Dimensional Modeling of Friction Stir-Welding Process, Int. J. Mach. Tool. Manuf., 2002, 42, p 1549–1557CrossRef
17.
Zurück zum Zitat F. Abu-Farha and M. Khraisheh, Deformation Characteristics of AZ31 Magnesium Alloy Under Various Forming Temperatures and Strain Rates, Proceedings of the 8th ESAFORM Conference on Material Forming, 2005, p 627–630 F. Abu-Farha and M. Khraisheh, Deformation Characteristics of AZ31 Magnesium Alloy Under Various Forming Temperatures and Strain Rates, Proceedings of the 8th ESAFORM Conference on Material Forming, 2005, p 627–630
18.
Zurück zum Zitat B. Darras, M. Khraisheh, F. Abu-Farha, and M. Omar, Friction Stir Processing of AZ31 Commercial Magnesium Alloy, J. Mater. Process. Technol., 2007, 191, p 77–81CrossRef B. Darras, M. Khraisheh, F. Abu-Farha, and M. Omar, Friction Stir Processing of AZ31 Commercial Magnesium Alloy, J. Mater. Process. Technol., 2007, 191, p 77–81CrossRef
19.
Zurück zum Zitat B. Darras, M. Omar, and M. Khraisheh, Experimental Thermal Analysis of Friction Stir Processing, Mater. Sci. Forum, 2007, 539–543, p 3801–3806CrossRef B. Darras, M. Omar, and M. Khraisheh, Experimental Thermal Analysis of Friction Stir Processing, Mater. Sci. Forum, 2007, 539–543, p 3801–3806CrossRef
20.
Zurück zum Zitat L. Malvern, Introduction to the Mechanics of Continuous Media, Prentice-Hall, Englewood Cliffs, 1969, p 526 L. Malvern, Introduction to the Mechanics of Continuous Media, Prentice-Hall, Englewood Cliffs, 1969, p 526
21.
Zurück zum Zitat J. Yeom, E. Jung, J. Hoon Kim, J. Han Kim, J. Hong, N. Park, K. Kim, and S. Choi, Modeling and Simulation of Dynamic Recrystallization and Grain Growth During Hot Working of Inconel 783 Superalloy, Surf. Rev. Lett., 2010, 17(1), p 105–109CrossRef J. Yeom, E. Jung, J. Hoon Kim, J. Han Kim, J. Hong, N. Park, K. Kim, and S. Choi, Modeling and Simulation of Dynamic Recrystallization and Grain Growth During Hot Working of Inconel 783 Superalloy, Surf. Rev. Lett., 2010, 17(1), p 105–109CrossRef
22.
Zurück zum Zitat H. Forst and M. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982, p 21 and 44 H. Forst and M. Ashby, Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982, p 21 and 44
23.
Zurück zum Zitat Q. Miao, L. Hu, X. Wang, and E. Wang, Grain Growth Kinetics of a Fine-Grained AZ31 Magnesium Alloy Produced by Hot Rolling, J. Alloys Compd., 2010, 493, p 87–90CrossRef Q. Miao, L. Hu, X. Wang, and E. Wang, Grain Growth Kinetics of a Fine-Grained AZ31 Magnesium Alloy Produced by Hot Rolling, J. Alloys Compd., 2010, 493, p 87–90CrossRef
Metadaten
Titel
A Model to Predict the Resulting Grain Size of Friction-Stir-Processed AZ31 Magnesium Alloy
verfasst von
Basil M. Darras
Publikationsdatum
01.07.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-011-0039-5

Weitere Artikel der Ausgabe 7/2012

Journal of Materials Engineering and Performance 7/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.