Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2012

01.11.2012

Enhanced Fatigue Crack Propagation Resistance in an Al-Zn-Mg-Cu Alloy by Retrogression and Reaging Treatment

verfasst von: Xu Chen, Zhiyi Liu, Mao Lin, Ailin Ning, Sumin Zeng

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructures and fatigue crack propagation (FCP) behavior of an Al-Zn-Mg-Cu alloy in T761 and retrogression and reaging (RRA) conditions were characterized by employing differential scanning calorimetry, optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron backscatter diffraction. The results suggested that coarse η′ precipitates were present in T761-treated sample, while fine dispersed η′ precipitates and GP zones were uniformly distributed in RRA-treated ones. Besides, the width of precipitate-free zones (PFZs) in T761-treated sample was found to be much greater than that in RRA-treated ones. Compared with T761-treated sample, the enhanced FCP resistance of RRA-treated sample was attributed to the shearable particles in matrix and narrow PFZs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Deschamps and Y. Bréchet, Influence of Quench and Heating Rates on the Ageing Response of an Al-Zn-Mg-(Zr) Alloy, Mater. Sci. Eng. A, 1998, 251(1–2), p 200–207 A. Deschamps and Y. Bréchet, Influence of Quench and Heating Rates on the Ageing Response of an Al-Zn-Mg-(Zr) Alloy, Mater. Sci. Eng. A, 1998, 251(1–2), p 200–207
2.
Zurück zum Zitat X.G. Fan, D.M. Jiang, Q.C. Meng, Z.H. Lai, and X.M. Zhang, Characterization of Precipitation Microstructure and Properties of 7150 Aluminium Alloy, Mater. Sci. Eng. A, 2006, 427(1–2), p 130–135 X.G. Fan, D.M. Jiang, Q.C. Meng, Z.H. Lai, and X.M. Zhang, Characterization of Precipitation Microstructure and Properties of 7150 Aluminium Alloy, Mater. Sci. Eng. A, 2006, 427(1–2), p 130–135
3.
Zurück zum Zitat J.A. Charles, F.A.A. Crane, and J.A.G. Furness, Selection and Use of Engineering Materials, Butterworth Heinemann, Oxford, 1997, p 227–255CrossRef J.A. Charles, F.A.A. Crane, and J.A.G. Furness, Selection and Use of Engineering Materials, Butterworth Heinemann, Oxford, 1997, p 227–255CrossRef
4.
Zurück zum Zitat E.A. Starke, Jr, and J.T. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32(2–3), p 131–172CrossRef E.A. Starke, Jr, and J.T. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32(2–3), p 131–172CrossRef
5.
Zurück zum Zitat J.-P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes, Lightweight Materials for Aircraft Application, Mater. Charact., 1995, 35(1), p 41–67CrossRef J.-P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes, Lightweight Materials for Aircraft Application, Mater. Charact., 1995, 35(1), p 41–67CrossRef
6.
Zurück zum Zitat Y.L. Wu, F.H. Froes, A. Alvarez, C.G. Li, and J. Liu, Microstructure and Properties of a New Super-High-Strength Al-Zn-Mg-Cu Alloy C912, Mater. Des., 1997, 18(4–6), p 211–215CrossRef Y.L. Wu, F.H. Froes, A. Alvarez, C.G. Li, and J. Liu, Microstructure and Properties of a New Super-High-Strength Al-Zn-Mg-Cu Alloy C912, Mater. Des., 1997, 18(4–6), p 211–215CrossRef
7.
Zurück zum Zitat B. Cina, U.S.Patent 3856584, December 24, 1974 B. Cina, U.S.Patent 3856584, December 24, 1974
8.
Zurück zum Zitat N.C. Danh, K. Rajan, and W. Wallace, A TEM Study of Microstructural Changes during Retrogression and Reaging in 7075 Aluminum, Metall. Trans. A, 1983, 14(9), p 1843–1850CrossRef N.C. Danh, K. Rajan, and W. Wallace, A TEM Study of Microstructural Changes during Retrogression and Reaging in 7075 Aluminum, Metall. Trans. A, 1983, 14(9), p 1843–1850CrossRef
9.
Zurück zum Zitat J.K. Park, Influence of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Resistance of Aluminum Alloy 7075-T6, Mater. Sci. Eng. A, 1988, 103(2), p 223–231CrossRef J.K. Park, Influence of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Resistance of Aluminum Alloy 7075-T6, Mater. Sci. Eng. A, 1988, 103(2), p 223–231CrossRef
10.
Zurück zum Zitat J.K. Park and A.J. Ardell, Effect of Retrogression and Reaging Treatments on the Microstructure of Al-7075-T651, Metall. Trans. A, 1984, 15(8), p 1531–1543CrossRef J.K. Park and A.J. Ardell, Effect of Retrogression and Reaging Treatments on the Microstructure of Al-7075-T651, Metall. Trans. A, 1984, 15(8), p 1531–1543CrossRef
11.
Zurück zum Zitat F. Viana, A.M.P. Pinto, H.M.C. Santos, and A.B. Lopes, Retrogression and Re-ageing of 7075 Aluminium Alloy: Microstructural Characterization, J. Mater. Process. Technol., 1999, 92–93, p 54–59CrossRef F. Viana, A.M.P. Pinto, H.M.C. Santos, and A.B. Lopes, Retrogression and Re-ageing of 7075 Aluminium Alloy: Microstructural Characterization, J. Mater. Process. Technol., 1999, 92–93, p 54–59CrossRef
12.
Zurück zum Zitat S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch, Correlations between Intergranular Stress Corrosion Cracking, Grain-Boundary Microchemistry, and Grain-Boundary Electrochemistry for Al-Zn-Mg-Cu Alloys, Corros. Sci., 2010, 52(12), p 4073–4080CrossRef S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch, Correlations between Intergranular Stress Corrosion Cracking, Grain-Boundary Microchemistry, and Grain-Boundary Electrochemistry for Al-Zn-Mg-Cu Alloys, Corros. Sci., 2010, 52(12), p 4073–4080CrossRef
13.
Zurück zum Zitat G.S. Peng, K.H. Chen, S.Y. Chen, and H.C. Fang, Influence of Repetitious-RRA Treatment on the Strength and SCC Resistance of Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2011, 528(12), p 4014–4018CrossRef G.S. Peng, K.H. Chen, S.Y. Chen, and H.C. Fang, Influence of Repetitious-RRA Treatment on the Strength and SCC Resistance of Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2011, 528(12), p 4014–4018CrossRef
14.
Zurück zum Zitat T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Evolution of Precipitate Microstructures during the Retrogression and Re-ageing Heat Treatment of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2010, 58(14), p 4814–4826CrossRef T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Evolution of Precipitate Microstructures during the Retrogression and Re-ageing Heat Treatment of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2010, 58(14), p 4814–4826CrossRef
15.
Zurück zum Zitat A.F. Oliveira, Jr., M.C. de Barros, K.R. Cardoso, and D.N. Travessa, The Effect of RRA on the Strength and SCC Resistance on AA7050 and AA7150 Aluminum Alloys, Mater. Sci. Eng. A, 2004, 379(1–2), p 321–326 A.F. Oliveira, Jr., M.C. de Barros, K.R. Cardoso, and D.N. Travessa, The Effect of RRA on the Strength and SCC Resistance on AA7050 and AA7150 Aluminum Alloys, Mater. Sci. Eng. A, 2004, 379(1–2), p 321–326
16.
Zurück zum Zitat J.F. Li, N. Birbilis, C.X. Li, Z.Q. Jia, B. Cai, and Z.Q. Zheng, Influence of Retrogression Temperature and Time on the Mechanical Properties and Exfoliation Corrosion Behavior of Aluminum Alloy AA7150, Mater. Charact., 2009, 60(11), p 1334–1341CrossRef J.F. Li, N. Birbilis, C.X. Li, Z.Q. Jia, B. Cai, and Z.Q. Zheng, Influence of Retrogression Temperature and Time on the Mechanical Properties and Exfoliation Corrosion Behavior of Aluminum Alloy AA7150, Mater. Charact., 2009, 60(11), p 1334–1341CrossRef
17.
Zurück zum Zitat B.B. Verma, J.D. Atkinson, and M. Kumar, Study of Fatigue Behavior of 7475 Aluminum Alloy, Bull. Mater. Sci., 2001, 24(2), p 231–236CrossRef B.B. Verma, J.D. Atkinson, and M. Kumar, Study of Fatigue Behavior of 7475 Aluminum Alloy, Bull. Mater. Sci., 2001, 24(2), p 231–236CrossRef
18.
Zurück zum Zitat J. Lindigkeit, A. Gysler, and G. Lütjering, The Effect of Microstructure on the Fatigue Crack Propagation Behavior of an Al-Zn-Mg-Cu Alloy, Metall. Trans. A, 1981, 12(9), p 1613–1619CrossRef J. Lindigkeit, A. Gysler, and G. Lütjering, The Effect of Microstructure on the Fatigue Crack Propagation Behavior of an Al-Zn-Mg-Cu Alloy, Metall. Trans. A, 1981, 12(9), p 1613–1619CrossRef
19.
Zurück zum Zitat M.N. Desmukh, R.K. Pandey, and A.K. Mukhopadhyay, Effect of Aging Treatments on the Kinetics of Fatigue Crack Growth in 7010 Aluminum Alloy, Mater. Sci. Eng. A, 2006, 435–436, p 318–326 M.N. Desmukh, R.K. Pandey, and A.K. Mukhopadhyay, Effect of Aging Treatments on the Kinetics of Fatigue Crack Growth in 7010 Aluminum Alloy, Mater. Sci. Eng. A, 2006, 435–436, p 318–326
20.
Zurück zum Zitat T.S. Srivatsan, S. Anand, S. Sriram, and V.K. Vasudevan, The High-Cycle Fatigue and Fracture Behavior of Aluminum Alloy 7055, Mater. Sci. Eng. A, 2000, 281(1–2), p 292–304 T.S. Srivatsan, S. Anand, S. Sriram, and V.K. Vasudevan, The High-Cycle Fatigue and Fracture Behavior of Aluminum Alloy 7055, Mater. Sci. Eng. A, 2000, 281(1–2), p 292–304
21.
Zurück zum Zitat J.Z. Chen, L. Zhen, S.J. Yang, and S.L. Dai, Effects of Precipitates on Fatigue Crack Growth Rate of AA 7055 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2010, 20(12), p 2209–2214CrossRef J.Z. Chen, L. Zhen, S.J. Yang, and S.L. Dai, Effects of Precipitates on Fatigue Crack Growth Rate of AA 7055 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2010, 20(12), p 2209–2214CrossRef
22.
Zurück zum Zitat R. Ayer, J.Y. Koo, J.W. Steeds, and B.K. Park, Microanalytical Study of the Heterogeneous Phases in Commercial Al-Zn-Mg-Cu Alloys, Metall. Trans. A, 1985, 16(11), p 1925–1936CrossRef R. Ayer, J.Y. Koo, J.W. Steeds, and B.K. Park, Microanalytical Study of the Heterogeneous Phases in Commercial Al-Zn-Mg-Cu Alloys, Metall. Trans. A, 1985, 16(11), p 1925–1936CrossRef
23.
Zurück zum Zitat W.F. Smith and N.J. Grant, Effect of Chromium and Copper Additions on Precipitation in Al-Zn-Mg Alloys, Metall. Trans., 1971, 2(5), p 1333–1340 W.F. Smith and N.J. Grant, Effect of Chromium and Copper Additions on Precipitation in Al-Zn-Mg Alloys, Metall. Trans., 1971, 2(5), p 1333–1340
24.
Zurück zum Zitat M. Cilense, W. Garlipp, A.T. Adorno, and C.S. Lourenço, Influence of the Heat Treatment and of the Chromium Addition on the Precipitation Phenomena of Al-Zn-Mg-Cu Alloy, J. Mater. Sci. Lett., 1985, 14(4), p 232–234CrossRef M. Cilense, W. Garlipp, A.T. Adorno, and C.S. Lourenço, Influence of the Heat Treatment and of the Chromium Addition on the Precipitation Phenomena of Al-Zn-Mg-Cu Alloy, J. Mater. Sci. Lett., 1985, 14(4), p 232–234CrossRef
25.
Zurück zum Zitat S. Suresh, A.K. Vasudevan, M. Tosten, and P.R. Howell, Microscopic and Macroscopic Aspects of Fracture in Lithium-Containing Aluminum Alloys, Acta Metall., 1987, 35(1), p 25–46CrossRef S. Suresh, A.K. Vasudevan, M. Tosten, and P.R. Howell, Microscopic and Macroscopic Aspects of Fracture in Lithium-Containing Aluminum Alloys, Acta Metall., 1987, 35(1), p 25–46CrossRef
26.
Zurück zum Zitat V.K. Gupta and S.R. Agnew, Fatigue Crack Surface Crystallography near Crack Initiating Particle Clusters in Precipitation Hardened Legacy and Modern Al-Zn-Mg-Cu Alloys, Int. J. Fatigue, 2011, 33(9), p 1159–1174CrossRef V.K. Gupta and S.R. Agnew, Fatigue Crack Surface Crystallography near Crack Initiating Particle Clusters in Precipitation Hardened Legacy and Modern Al-Zn-Mg-Cu Alloys, Int. J. Fatigue, 2011, 33(9), p 1159–1174CrossRef
27.
Zurück zum Zitat S. Bai, Z.Y. Liu, Y.T. Li, Y.H. Hou, and X. Chen, Microstructures and Fatigue Fracture Behaviors of an Al-Cu-Mg-Ag Alloy with Addition of Rare Earth Er, Mater. Sci. Eng. A, 2010, 527(7–8), p 1806–1814 S. Bai, Z.Y. Liu, Y.T. Li, Y.H. Hou, and X. Chen, Microstructures and Fatigue Fracture Behaviors of an Al-Cu-Mg-Ag Alloy with Addition of Rare Earth Er, Mater. Sci. Eng. A, 2010, 527(7–8), p 1806–1814
28.
Zurück zum Zitat S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998, p 335–342CrossRef S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998, p 335–342CrossRef
29.
Zurück zum Zitat K.T. Venkateswara Rao and R.O. Ritchie, Effect of Prolonged High-Temperature Exposure on the Fatigue and Fracture Behavior of Aluminum-Lithium Alloy 2090, Mater. Sci. Eng. A, 1988, 100, p 23–30CrossRef K.T. Venkateswara Rao and R.O. Ritchie, Effect of Prolonged High-Temperature Exposure on the Fatigue and Fracture Behavior of Aluminum-Lithium Alloy 2090, Mater. Sci. Eng. A, 1988, 100, p 23–30CrossRef
30.
Zurück zum Zitat P.J.E. Forsyth and A.W. Bowen, The Relationship Between Fatigue Crack Behavior and Microstructure in 7178 Aluminum Alloy, Int. J. Fatigue, 1981, 3(1), p 17–25CrossRef P.J.E. Forsyth and A.W. Bowen, The Relationship Between Fatigue Crack Behavior and Microstructure in 7178 Aluminum Alloy, Int. J. Fatigue, 1981, 3(1), p 17–25CrossRef
31.
Zurück zum Zitat K. Minakawa, G. Levan, and A.J. Mcevily, The Influence of Load Ratio on Fatigue Crack Growth in 7090-T6 and IN9021-T4 P/M Aluminum Alloys, Metall. Trans. A, 1986, 17(10), p 1787–1795CrossRef K. Minakawa, G. Levan, and A.J. Mcevily, The Influence of Load Ratio on Fatigue Crack Growth in 7090-T6 and IN9021-T4 P/M Aluminum Alloys, Metall. Trans. A, 1986, 17(10), p 1787–1795CrossRef
32.
Zurück zum Zitat B. Sarkar, M. Marek, and E.A. Starke JR, The Effect of Copper Content and Heat Treatment on the Stress Corrosion Characteristics of Al-6Zn-2Mg-xCu Alloys, Metall. Trans. A, 1981, 12(11), p 1939–1943CrossRef B. Sarkar, M. Marek, and E.A. Starke JR, The Effect of Copper Content and Heat Treatment on the Stress Corrosion Characteristics of Al-6Zn-2Mg-xCu Alloys, Metall. Trans. A, 1981, 12(11), p 1939–1943CrossRef
33.
Zurück zum Zitat S. Suresh, Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models, Metall. Trans. A, 1985, 16(1), p 249–260CrossRef S. Suresh, Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models, Metall. Trans. A, 1985, 16(1), p 249–260CrossRef
34.
Zurück zum Zitat C. Laird and G.C. Smith, Crack Propagation in High Stress Fatigue, Philos. Mag., 1962, 7(77), p 847–857CrossRef C. Laird and G.C. Smith, Crack Propagation in High Stress Fatigue, Philos. Mag., 1962, 7(77), p 847–857CrossRef
35.
Zurück zum Zitat D.S. Park and S.W. Nam, Effect of Precipitate Free Zones on Low Cycle Fatigue Life of Al-Zn-Mg Alloy, Mater. Sci. Technol., 1995, 11(9), p 921–925 D.S. Park and S.W. Nam, Effect of Precipitate Free Zones on Low Cycle Fatigue Life of Al-Zn-Mg Alloy, Mater. Sci. Technol., 1995, 11(9), p 921–925
Metadaten
Titel
Enhanced Fatigue Crack Propagation Resistance in an Al-Zn-Mg-Cu Alloy by Retrogression and Reaging Treatment
verfasst von
Xu Chen
Zhiyi Liu
Mao Lin
Ailin Ning
Sumin Zeng
Publikationsdatum
01.11.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0169-4

Weitere Artikel der Ausgabe 11/2012

Journal of Materials Engineering and Performance 11/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.