Skip to main content
Log in

Effect of Processing Parameters on the Mechanical Properties of Interstitial Free Steel Subjected to Friction Stir Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, the effect of friction stir processing parameters on the mechanical properties of an interstitial free steel was studied. Four rotating speeds (800, 1250, 1600, 2000 rpm) and two traverse speeds (31.5 and 63 mm/min) were employed. On both sides of specimens, a nanograin layer with the thickness and nanograins of 150 μm and 50-100 nm were formed, respectively. For the specimen processed at rotating speed of 1600 rpm and the traverse speed of 31.5 mm/min, the maximum strength was achieved, which was about 80% increase in the strength comparing to that of base material. For constant traverse speed, the increase in the rotation speed from 800 to 1600 rpm led to a decrease in uniform and total elongation of friction stir processed samples. By contrast, when the rotating speed exceeded 1600 rpm, the uniform and total elongation was increased again, while there was a drop in strength. The results of microhardness indicate more than threefold increase in the hardness of the stirred zone comparing to that of base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.C. Koch, D.G. Morris, K. Lu, and A. Inoue, Ductility of Nanostructured Materials, Mater. Res. Soc. Bull., 1999, 24, p 54–58

    CAS  Google Scholar 

  2. S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, and A.K. Mukherjee, Low-Temperature Superplasticity in Nanostructured Nickel and Metal Alloys, Nature, 1999, 398, p 684

    Article  CAS  Google Scholar 

  3. K. Ramesh, K. Guduru, L. Murty, K. Youssef, R. Scattergood, and C. Koch, Mechanical Behavior of Nanocrystalline Copper, Mater. Sci. Eng., A, 2007, 463, p 14–21

    Article  Google Scholar 

  4. S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han, Tensile Properties of In Situ Consolidated Nanocrystalline Cu, Acta Mater., 2005, 53, p 1521–1533

    Article  CAS  Google Scholar 

  5. D. Jia, K.T. Ramesh, and E. Ma, Effects of Nanocrystalline and Ultrafine Grain Sizes on Constitutive Behavior and Shear Bands in Iron, Acta Mater., 2003, 51, p 3495–3509

    Article  CAS  Google Scholar 

  6. A. Azushima, Trend of Ultrafine Grained Steel, Proceedings of the 245th Symposium on Technology of Plasticity, 2003, p 225, 53–60 (in Japanese)

  7. Z.Y. Maa, F.C. Liu a, and R.S. Mishra, Superplastic Deformation Mechanism of an Ultrafine-Grained Aluminum Alloy Produced by Friction Stir Processing, Acta Mater., 2010, 58, p 4693–4704

    Article  Google Scholar 

  8. B. Hadzima, M. Janeˇcek, Y. Estrin, and H. Kim, Microstructure and Corrosion Properties of Ultrafine-Grained Interstitial Free Steel, Mater. Sci. Eng., A, 2007, 462, p 243–247

    Article  Google Scholar 

  9. S. Han, M. Goto, C. Lim, C. Kima, and S. Kim, Fatigue Behavior of Nano-grained Copper Prepared by ECAP, J. Alloys Compd., 2007, 434–435, p 304–306

    Article  Google Scholar 

  10. Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Multiple-Pass Friction Stir Processing on Microstructure and Tensile Properties of a Cast Aluminum-Silicon Alloy, Scripta Mater., 2006, 54, p 1623–1626

    Article  CAS  Google Scholar 

  11. K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, Improvement of Mechanical Properties of aluminum Die Casting Alloy by Multi-Pass Friction Stir Processing, Mater. Sci. Eng., A, 2006, 437, p 274–280

    Article  Google Scholar 

  12. L. Karthikeyan, V.S. Senthilkumar, V. Balasubramanian, and S. Natarajan, Mechanical Property and Microstructural Changes During Friction Stir Processing of Cast Aluminum 2285 Alloy, Mater. Des., 2009, 30, p 2237–2242

    Article  CAS  Google Scholar 

  13. A.H. Feng and Z.Y. Ma, Enhanced Mechanical Properties of Mg-Al-Zn Cast Alloy Via Friction Stir Processing, Scripta Mater., 2007, 56, p 397–400

    Article  CAS  Google Scholar 

  14. Rajib Saha and R.K. Ray, Formation of Nano- to Ultrafine Grains in a Severely Cold Rolled Interstitial Free Steel, Mater. Sci. Eng., A, 2007, 459, p 223–226

    Article  Google Scholar 

  15. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction Stir Welding of Carbon Steels, Mater. Sci. Eng., A, 2006, 429, p 50–57

    Article  Google Scholar 

  16. H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, and K. Nogi, Friction Stir Welding of Ultrafine Grained Interstitial Free Steels, Mater. Trans., 2006, 47, p 239–242

    Article  CAS  Google Scholar 

  17. K. Dehghani and A. Chabok, Dependence of Zener Parameter on the Nanograins Formed During Friction Stir Processing of Interstitial Free Steels, Mater. Sci. Eng., A, 2011, 528, p 4325–4330

    Article  Google Scholar 

  18. G. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, New York, 1986

    Google Scholar 

  19. E. Hosseini and M. Kazeminezhad, Nanostructure and Mechanical Properties of 0-7 Strained Aluminum by CGP: XRD, TEM and Tensile Test, Mater. Sci. Eng., A, 2009, 526, p 219–224

    Article  Google Scholar 

  20. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Constrained Groove Pressing of Low Carbon Steel: Nano-structure and Mechanical Properties, Mater. Sci. Eng., A, 2010, 527, p 4043–4049

    Article  Google Scholar 

  21. R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Microstructure and Mechanical Properties of Ultrafine Grained Copper Processes by Multiple Isothermal Forging, Phys. Met. Metall., 1992, 73, p 373

    Google Scholar 

  22. H.Q. Li and F. Ebrahimi, Transition of Deformation and Fracture Behaviors in Nanostructured Face-Centered-Cubic Metals, Appl. Phys. Lett., 2004, 84, p 4307–4309

    Article  CAS  Google Scholar 

  23. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51, p 427–556

    Article  CAS  Google Scholar 

  24. X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, and C.C. Koch, Mechanical Properties of Cyromilled Nanocrystalline Zn Studied by the Miniaturized Disk Bend Test, Acta Mater., 2002, 50, p 3527–3533

    Article  CAS  Google Scholar 

  25. X. Zhang, H. Wang, R. Scattergood, J. Narayan, C. Koch, and A. Sergueeva, Studies of Deformation Mechanisms in Ultra-fine-grained and Nanostructured Zn, Acta Mater., 2002, 50, p 4823–4830

    Article  CAS  Google Scholar 

  26. Y. Wang and E. Ma, Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal, Acta Mater., 2004, 52(6), p p1699–p1709

    Article  Google Scholar 

  27. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals, Acta Mater., 2007, 55, p 4041–4065

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chabok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabok, A., Dehghani, K. Effect of Processing Parameters on the Mechanical Properties of Interstitial Free Steel Subjected to Friction Stir Processing. J. of Materi Eng and Perform 22, 1324–1330 (2013). https://doi.org/10.1007/s11665-012-0424-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0424-8

Keywords

Navigation