Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2014

01.04.2014

Hot Deformation Behavior of Incoloy 901 Through Hot Tensile Testing

verfasst von: F. Mohammadi Shore, M. Morakabati, S. M. Abbasi, A. Momeni

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hot deformation tests were conducted on cast and wrought Incoloy 901 produced by electro-slag remelting at temperatures of 950-1150 °C and strain rates of 0.01-1 s−1. Both materials showed acceptable hot workability in the studied range of temperature and strain rates. However, better workability of the wrought material was associated with easier dynamic recrystallization compared to in the cast material. A complete dynamic recrystallization in the wrought material was observed at temperatures above 1100 °C. On the other hand, in the cast material that was characterized by a coarse grain structure, dynamic recrystallization occurred partially and was attributed to the low density of grain boundaries. It was recognized that in order to avoid the risk of premature fracture, hot processing of the studied material should be conducted in the temperature range of 1000-1100 °C. At high temperatures, over 1100 °C, both materials suffered from a lack of acceptable hot workability. Rather, the wrought material showed a slight hot ductility trough around 1050 °C that could be attributed to the segregation of detrimental solute atoms such as S and P to the grain boundaries. The grain boundary decohesion was controlling the fracture mechanism of the wrought material. Due to the absence of extensive DRX in the cast material, the incipient melting, void formation, and decohesion of precipitates were found responsible for the final fracture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Zhang, H. Yu, T. Zhang, Y. Zhu, X. Ning, and Z. Hu, Incoloy 901 Alloy with Improved Malleability, Mater. Sci. Eng., 1992, A158, p 47–51CrossRef S. Zhang, H. Yu, T. Zhang, Y. Zhu, X. Ning, and Z. Hu, Incoloy 901 Alloy with Improved Malleability, Mater. Sci. Eng., 1992, A158, p 47–51CrossRef
2.
Zurück zum Zitat M.M. Morra, R.G. Ballinger, and I.S. Hwang, INCOLOY 908, a Low Coefficient of Expansion for High-Strength Cryogenic Applications: Part I. Physical Metallurgy, Metal. Trans., 1992, 23A, p 3177–3192 M.M. Morra, R.G. Ballinger, and I.S. Hwang, INCOLOY 908, a Low Coefficient of Expansion for High-Strength Cryogenic Applications: Part I. Physical Metallurgy, Metal. Trans., 1992, 23A, p 3177–3192
3.
Zurück zum Zitat R.B. Frank, R.K. Mahidhara, Effect of Heat Treatment on Mechanical Properties and Microstructure of Alloy 901, Carpenter Technology Corporation Research and Development Center, 1988, p 23-32. R.B. Frank, R.K. Mahidhara, Effect of Heat Treatment on Mechanical Properties and Microstructure of Alloy 901, Carpenter Technology Corporation Research and Development Center, 1988, p 23-32.
4.
Zurück zum Zitat M.J. Donachie and S.J. Donachie, Selection of Superalloys for Design, 2nd ed., ASM International, Materials Park, 2006 M.J. Donachie and S.J. Donachie, Selection of Superalloys for Design, 2nd ed., ASM International, Materials Park, 2006
5.
Zurück zum Zitat S.H. Song, Z.X. Yuan, J. Jia, D.D. Shen, and A.M. Guo, The Role of Tin in the Hot-Ductility Deterioration of a Low-Carbon Steel, Metal. Mater. Trans., 2003, A34, p 1611–1616CrossRef S.H. Song, Z.X. Yuan, J. Jia, D.D. Shen, and A.M. Guo, The Role of Tin in the Hot-Ductility Deterioration of a Low-Carbon Steel, Metal. Mater. Trans., 2003, A34, p 1611–1616CrossRef
6.
Zurück zum Zitat L. Ben Mostefa, G. Saindrenan, M.P. Solignac, and J.P. Colin, Effect of Interfacial Sulfur Segregation on the Hot Ductility Drop of Fe-36Ni Alloy, Acta Metall. Mater., 1991, 39, p 3111–3118CrossRef L. Ben Mostefa, G. Saindrenan, M.P. Solignac, and J.P. Colin, Effect of Interfacial Sulfur Segregation on the Hot Ductility Drop of Fe-36Ni Alloy, Acta Metall. Mater., 1991, 39, p 3111–3118CrossRef
7.
Zurück zum Zitat M. Yazdani, S.M. Abbasi, A. Momeni, and A. Karimi Taheri, Hot Ductility of a Fe–Ni–Co Alloy in Cast and Wrought Conditions, Mater. Des., 2011, 32, p 2956–2962CrossRef M. Yazdani, S.M. Abbasi, A. Momeni, and A. Karimi Taheri, Hot Ductility of a Fe–Ni–Co Alloy in Cast and Wrought Conditions, Mater. Des., 2011, 32, p 2956–2962CrossRef
8.
Zurück zum Zitat X.M. Chen, S.H. Song, Z.C. Sun, S.J. Liu, L.Q. Weng, and Z.X. Yuan, Effect of Microstructural Features on the Hot Ductility of 2.25Cr–1Mo Steel, Mater. Sci. Eng., 2010, A527, p 2725–2732CrossRef X.M. Chen, S.H. Song, Z.C. Sun, S.J. Liu, L.Q. Weng, and Z.X. Yuan, Effect of Microstructural Features on the Hot Ductility of 2.25Cr–1Mo Steel, Mater. Sci. Eng., 2010, A527, p 2725–2732CrossRef
9.
Zurück zum Zitat A.S. Hamada and L.P. Karjalainen, Hot Ductility Behaviour of High-Mn TWIP Steels, Mater. Sci. Eng., 2011, A528, p 1819–1828CrossRef A.S. Hamada and L.P. Karjalainen, Hot Ductility Behaviour of High-Mn TWIP Steels, Mater. Sci. Eng., 2011, A528, p 1819–1828CrossRef
10.
Zurück zum Zitat A. Momeni, K. Dehghani, M. Heidari, and M. Vaseghi, Modeling the Flow Curve of AISI, 410 Martensitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 2238–2243CrossRef A. Momeni, K. Dehghani, M. Heidari, and M. Vaseghi, Modeling the Flow Curve of AISI, 410 Martensitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 2238–2243CrossRef
11.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205, p 308–315CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205, p 308–315CrossRef
12.
Zurück zum Zitat B. Wang, S.H. Zhang, M. Cheng, and H.W. Song, Dynamic Recrystallization Mechanism of Inconel 690 Superalloy During Hot Deformation at High Strain Rate, J. Mater. Eng. Perform., 2013, doi:10.1007/s11665-013-0520-4 B. Wang, S.H. Zhang, M. Cheng, and H.W. Song, Dynamic Recrystallization Mechanism of Inconel 690 Superalloy During Hot Deformation at High Strain Rate, J. Mater. Eng. Perform., 2013, doi:10.​1007/​s11665-013-0520-4
13.
Zurück zum Zitat E. López-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde, and J.M. Cabrera, Hot Ductility Behavior of Boron Microalloyed Steels, Mater. Sci. Eng., 2007, A460–461, p 464–470CrossRef E. López-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde, and J.M. Cabrera, Hot Ductility Behavior of Boron Microalloyed Steels, Mater. Sci. Eng., 2007, A460–461, p 464–470CrossRef
14.
Zurück zum Zitat L.H. Chown and L.A. Cornish, Investigation of Hot Ductility in Al-Killed Boron Steels, Mater. Sci. Eng., 2008, A494, p 263–275CrossRef L.H. Chown and L.A. Cornish, Investigation of Hot Ductility in Al-Killed Boron Steels, Mater. Sci. Eng., 2008, A494, p 263–275CrossRef
15.
Zurück zum Zitat S.H. Song, A.M. Guo, D.D. Shen, Z.X. Yuan, J. Liu, and T.D. Xu, Effect of Boron on the Hot Ductility of 2.25Cr1Mo Steel, Metal. Mater. Trans., 2003, A36, p 96–100 S.H. Song, A.M. Guo, D.D. Shen, Z.X. Yuan, J. Liu, and T.D. Xu, Effect of Boron on the Hot Ductility of 2.25Cr1Mo Steel, Metal. Mater. Trans., 2003, A36, p 96–100
16.
Zurück zum Zitat S.C. Seo, K.S. Son, S.K. Lee, I. Kim, T.J. Lee, C. Yim, and D. Kim, Variation of Hot Ductility Behavior in As-Cast and Remelted Steel Slab, Metal. Mater. Int., 2008, 14, p 559–563CrossRef S.C. Seo, K.S. Son, S.K. Lee, I. Kim, T.J. Lee, C. Yim, and D. Kim, Variation of Hot Ductility Behavior in As-Cast and Remelted Steel Slab, Metal. Mater. Int., 2008, 14, p 559–563CrossRef
17.
Zurück zum Zitat G. Bai, J. Li, R. Hu, Z. Tang, X. Xue, and H. Fu, Effect of Temperature on Tensile Behavior of Ni–Cr–W Based Superalloys, Mater. Sci. Eng., 2011, A528, p 1974–1978CrossRef G. Bai, J. Li, R. Hu, Z. Tang, X. Xue, and H. Fu, Effect of Temperature on Tensile Behavior of Ni–Cr–W Based Superalloys, Mater. Sci. Eng., 2011, A528, p 1974–1978CrossRef
18.
Zurück zum Zitat E. Liu, S. Sun, G. Tu, Z. Zheng, X. Guan, and L. Zhang, Tensile and Fracture Behavior of DZ68 Ni-Base Superalloys, J. Mater. Sci. Technol., 2009, 25, p 727–730 E. Liu, S. Sun, G. Tu, Z. Zheng, X. Guan, and L. Zhang, Tensile and Fracture Behavior of DZ68 Ni-Base Superalloys, J. Mater. Sci. Technol., 2009, 25, p 727–730
19.
Zurück zum Zitat Y. Lu, J. Liu, X. Li, J. Liang, Z. Li, G. Wu, and X. Zhou, Hot Deformation Behavior of Hastelloy C276 Superalloy, Trans. Nonferrous Met. Soc. China, 2012, 22, p s84–s88CrossRef Y. Lu, J. Liu, X. Li, J. Liang, Z. Li, G. Wu, and X. Zhou, Hot Deformation Behavior of Hastelloy C276 Superalloy, Trans. Nonferrous Met. Soc. China, 2012, 22, p s84–s88CrossRef
20.
Zurück zum Zitat ASTM E8 Standard, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2004 ASTM E8 Standard, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2004
21.
Zurück zum Zitat Y.C. Lin, J. Deng, G. Liu, and M.S. Chen, Hot Tensile Deformation Behaviors and Constitutive Model of 42CrMo Steel, Mater. Des., 2014, 53, p 349–356CrossRef Y.C. Lin, J. Deng, G. Liu, and M.S. Chen, Hot Tensile Deformation Behaviors and Constitutive Model of 42CrMo Steel, Mater. Des., 2014, 53, p 349–356CrossRef
22.
Zurück zum Zitat A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng., A, 2010, 527, p 1605–1611CrossRef A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi, Hot Deformation Behavior and Microstructural Evolution of a Superaustenitic Stainless Steel, Mater. Sci. Eng., A, 2010, 527, p 1605–1611CrossRef
23.
Zurück zum Zitat B. Wang, X. Xu, X. Liu, and G. Wang, Dynamic Recrystallization Behavior in Mn-Cr Gear Steel, J. Iron. Steel Res. Int., 2006, 13, p 49–53CrossRef B. Wang, X. Xu, X. Liu, and G. Wang, Dynamic Recrystallization Behavior in Mn-Cr Gear Steel, J. Iron. Steel Res. Int., 2006, 13, p 49–53CrossRef
24.
Zurück zum Zitat S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, and P. Poelt, Assessment of Dynamic Softening Mechanisms in Allvac® 718PlusTM by EBSD Analysis, Mater. Sci. Eng., 2011, 528, p 3754–3760CrossRef S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, and P. Poelt, Assessment of Dynamic Softening Mechanisms in Allvac® 718PlusTM by EBSD Analysis, Mater. Sci. Eng., 2011, 528, p 3754–3760CrossRef
25.
Zurück zum Zitat X. Wang, E. Brunger, and G. Gottstein, The Role of Twinning During Dynamic Recrystallization in Alloy 800H, Scr. Mater., 2002, 46, p 875–880CrossRef X. Wang, E. Brunger, and G. Gottstein, The Role of Twinning During Dynamic Recrystallization in Alloy 800H, Scr. Mater., 2002, 46, p 875–880CrossRef
26.
Zurück zum Zitat S. Gourdet and F. Montheilet, An Experimental Study of the Recrystallization Mechanism During Hot Deformation of Aluminum, Mater. Sci. Eng., 2000, A283, p 274–288CrossRef S. Gourdet and F. Montheilet, An Experimental Study of the Recrystallization Mechanism During Hot Deformation of Aluminum, Mater. Sci. Eng., 2000, A283, p 274–288CrossRef
Metadaten
Titel
Hot Deformation Behavior of Incoloy 901 Through Hot Tensile Testing
verfasst von
F. Mohammadi Shore
M. Morakabati
S. M. Abbasi
A. Momeni
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-0863-5

Weitere Artikel der Ausgabe 4/2014

Journal of Materials Engineering and Performance 4/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.