Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2014

01.05.2014

Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations

verfasst von: G. Kaptay, J. Janczak-Rusch, G. Pigozzi, L. P. H. Jeurgens

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A general equation is derived for melting point depression (MPD) of pure metals, consisting of three terms: MPD due to high gas pressure, MPD due to high strain energy, and MPD due to small size of the metal. Particular equations are derived for different configurations of the solid metal, including grains embedded within a matrix. The equations obtained in this paper can be used to design nano-joining structures with improved MPD.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat T.T. Bao, Y. Kim, J. Lee, and J.G. Lee, Preparation and Thermal Analysis of Sn-Ag Nano Solders, Mater. Trans., 2010, 51, p 2145–2149CrossRef T.T. Bao, Y. Kim, J. Lee, and J.G. Lee, Preparation and Thermal Analysis of Sn-Ag Nano Solders, Mater. Trans., 2010, 51, p 2145–2149CrossRef
2.
Zurück zum Zitat C. Zou, Y. Gao, B. Yang, and Q. Zhai, Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder, J. Mater. Sci. Mater. Electron., 2010, 21, p 868–874CrossRef C. Zou, Y. Gao, B. Yang, and Q. Zhai, Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder, J. Mater. Sci. Mater. Electron., 2010, 21, p 868–874CrossRef
3.
Zurück zum Zitat R. Longtin, E. Hack, J. Neuenschwander, and J. Janczak-Rusch, Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology, Adv. Mater., 2011, 20, p 1–5 R. Longtin, E. Hack, J. Neuenschwander, and J. Janczak-Rusch, Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology, Adv. Mater., 2011, 20, p 1–5
4.
Zurück zum Zitat G. Pigozzi, A. Antusek, J. Janczak-Rusch, M. Parlinska-Wojtan, D. Passerone, C.A. Pignedoli, V. Bissig, J. Patscheider, and L.P.H. Jeurgens, Phase Constitution and Interface Structure of Nano-sized Ag-Cu/AlN Multilayers: Experimental and Ab Initio Modeling, Appl. Phys. Lett., 2012, 101, p 181602CrossRef G. Pigozzi, A. Antusek, J. Janczak-Rusch, M. Parlinska-Wojtan, D. Passerone, C.A. Pignedoli, V. Bissig, J. Patscheider, and L.P.H. Jeurgens, Phase Constitution and Interface Structure of Nano-sized Ag-Cu/AlN Multilayers: Experimental and Ab Initio Modeling, Appl. Phys. Lett., 2012, 101, p 181602CrossRef
5.
Zurück zum Zitat P. Pawlow, Über die Abhängigkeit des Schmelzpunktes von der Oberflächenergie eines festen Körpers, Z. Phys. Chem., 1908, 55, p 545–548 P. Pawlow, Über die Abhängigkeit des Schmelzpunktes von der Oberflächenergie eines festen Körpers, Z. Phys. Chem., 1908, 55, p 545–548
6.
Zurück zum Zitat M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Solid Films, J. Phys. Soc. Jpn., 1954, 9(3), p 359–363CrossRef M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Solid Films, J. Phys. Soc. Jpn., 1954, 9(3), p 359–363CrossRef
7.
Zurück zum Zitat J.F. Pocza, A. Barna, and P.B. Barna, Formation Processes of Vacuum-Deposited Indium Films and Thermodynamical Properties of Submicroscopic Particles Observed by In Situ Electron Microscopy, J. Vac. Sci. Technol., 1969, 6(4), p 472–475CrossRef J.F. Pocza, A. Barna, and P.B. Barna, Formation Processes of Vacuum-Deposited Indium Films and Thermodynamical Properties of Submicroscopic Particles Observed by In Situ Electron Microscopy, J. Vac. Sci. Technol., 1969, 6(4), p 472–475CrossRef
8.
Zurück zum Zitat C.J. Coombes, The Melting of Small Particles of Lead and Indium, J. Phys. F, 1972, 2, p 441–449CrossRef C.J. Coombes, The Melting of Small Particles of Lead and Indium, J. Phys. F, 1972, 2, p 441–449CrossRef
9.
Zurück zum Zitat Ph Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particles, Phys. Rev. A, 1976, 13, p 2287–2296CrossRef Ph Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particles, Phys. Rev. A, 1976, 13, p 2287–2296CrossRef
10.
Zurück zum Zitat P.R. Couchman and W.A. Jesser, Thermodynamic Theory of Size Dependence of Melting Temperature in Metals, Nature, 1977, 269, p 481–483CrossRef P.R. Couchman and W.A. Jesser, Thermodynamic Theory of Size Dependence of Melting Temperature in Metals, Nature, 1977, 269, p 481–483CrossRef
11.
Zurück zum Zitat F. Spaepen and D. Turnbull, Negative Pressures and Melting Point Depression in Oxide-Coated Liquid Metal Droplets, Scripta Metall., 1979, 13, p 149–151CrossRef F. Spaepen and D. Turnbull, Negative Pressures and Melting Point Depression in Oxide-Coated Liquid Metal Droplets, Scripta Metall., 1979, 13, p 149–151CrossRef
12.
Zurück zum Zitat G.L. Allen, W.W. Gile, and W.A. Jesser, The Melting Temperature of Microcrystals Embedded in a Matrix, Acta Metall., 1980, 28, p 1695–1701CrossRef G.L. Allen, W.W. Gile, and W.A. Jesser, The Melting Temperature of Microcrystals Embedded in a Matrix, Acta Metall., 1980, 28, p 1695–1701CrossRef
13.
Zurück zum Zitat R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deuscher, T. Ben-David, J.M. Penisson, and A. Bourret, Surface Melting Enhanced by Curvature Effects, Surf. Sci., 1994, 303, p 231–246CrossRef R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deuscher, T. Ben-David, J.M. Penisson, and A. Bourret, Surface Melting Enhanced by Curvature Effects, Surf. Sci., 1994, 303, p 231–246CrossRef
14.
Zurück zum Zitat K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys, Prog. Mater. Sci., 1997, 42, p 287–300CrossRef K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys, Prog. Mater. Sci., 1997, 42, p 287–300CrossRef
15.
Zurück zum Zitat M. Wautelet, On the Shape Dependence of the Melting Temperature of Small Particles, Phys. Lett. A, 1998, 246, p 341–342CrossRef M. Wautelet, On the Shape Dependence of the Melting Temperature of Small Particles, Phys. Lett. A, 1998, 246, p 341–342CrossRef
16.
Zurück zum Zitat Z. Zhang, J.C. Li, and Q. Jiang, Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals, J. Phys. D, 2000, 33, p 2653–2656CrossRef Z. Zhang, J.C. Li, and Q. Jiang, Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals, J. Phys. D, 2000, 33, p 2653–2656CrossRef
17.
Zurück zum Zitat Q. Jiang, Z. Zhang, and J.C. Li, Melting Thermodynamics of Nanocrystals Embedded in a Matrix, Acta Mater., 2000, 48, p 4791–4795CrossRef Q. Jiang, Z. Zhang, and J.C. Li, Melting Thermodynamics of Nanocrystals Embedded in a Matrix, Acta Mater., 2000, 48, p 4791–4795CrossRef
18.
Zurück zum Zitat T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, Z. Metallkd., 2001, 92, p 467–472 T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, Z. Metallkd., 2001, 92, p 467–472
19.
Zurück zum Zitat M. Hillert and J. Argen, Effect of Surface Free Energy and Surface Stress on Phase Equilibria, Acta Mater., 2002, 50, p 2429–2441CrossRef M. Hillert and J. Argen, Effect of Surface Free Energy and Surface Stress on Phase Equilibria, Acta Mater., 2002, 50, p 2429–2441CrossRef
20.
Zurück zum Zitat U. Tartaglino and E. Tosatti, Strain Effects at Solid Surfaces Near the Melting Point, Surf. Sci., 2003, 532–535, p 623–627CrossRef U. Tartaglino and E. Tosatti, Strain Effects at Solid Surfaces Near the Melting Point, Surf. Sci., 2003, 532–535, p 623–627CrossRef
21.
Zurück zum Zitat Q. Jiang, L.H. Liang, and J.C. Li, Thermodynamic Superheating of Low-Dimensional Metals Embedded in Matrix, Vacuum, 2003, 72, p 249–255CrossRef Q. Jiang, L.H. Liang, and J.C. Li, Thermodynamic Superheating of Low-Dimensional Metals Embedded in Matrix, Vacuum, 2003, 72, p 249–255CrossRef
22.
Zurück zum Zitat Z. Shi, P. Wynblatt, and S.G. Srinivasan, Melting Behavior of Nanosized Lead Particles Embedded in an Aluminium Matrix, Acta Mater., 2004, 52, p 2305–2316CrossRef Z. Shi, P. Wynblatt, and S.G. Srinivasan, Melting Behavior of Nanosized Lead Particles Embedded in an Aluminium Matrix, Acta Mater., 2004, 52, p 2305–2316CrossRef
23.
Zurück zum Zitat V.M. Samsonov and O.A. Malkov, Thermodynamic Model of Crystallization and Melting of Small Particles, Cent. Eur. J. Phys., 2004, 2(1), p 90–103CrossRef V.M. Samsonov and O.A. Malkov, Thermodynamic Model of Crystallization and Melting of Small Particles, Cent. Eur. J. Phys., 2004, 2(1), p 90–103CrossRef
24.
Zurück zum Zitat Q.S. Mei, S.C. Wang, H.T. Cong, Z.H. Jin, and K. Lu, Determination of Pressure Effect on the Melting Point Elevation of Al Nanoparticles Encapsulated in Al2O3 without epitaxial interface, Phys. Rev. B, 2004, 70, p 125421CrossRef Q.S. Mei, S.C. Wang, H.T. Cong, Z.H. Jin, and K. Lu, Determination of Pressure Effect on the Melting Point Elevation of Al Nanoparticles Encapsulated in Al2O3 without epitaxial interface, Phys. Rev. B, 2004, 70, p 125421CrossRef
25.
Zurück zum Zitat J. Chang and E. Johnson, Surface and Bulk Melting of Small Metal Clusters, Philos. Mag., 2005, 85(30), p 3617–3627CrossRef J. Chang and E. Johnson, Surface and Bulk Melting of Small Metal Clusters, Philos. Mag., 2005, 85(30), p 3617–3627CrossRef
26.
Zurück zum Zitat J. Slutsker, K. Thornton, A.L. Roytburd, J.A. Warren, and G.B. McFadden, Phase Field Modeling of Solidification Under Stress, Phys. Rev. B, 2006, 74(1), p 014103CrossRef J. Slutsker, K. Thornton, A.L. Roytburd, J.A. Warren, and G.B. McFadden, Phase Field Modeling of Solidification Under Stress, Phys. Rev. B, 2006, 74(1), p 014103CrossRef
27.
Zurück zum Zitat J.J. Hoyt, Effect of Stress on Melting and Freezing in Nanopores, Phys. Rev. Lett., 2006, 96(4), p 045702CrossRef J.J. Hoyt, Effect of Stress on Melting and Freezing in Nanopores, Phys. Rev. Lett., 2006, 96(4), p 045702CrossRef
28.
Zurück zum Zitat G. Guisbiers and M. Wautelet, Size, Shape and Stress Effects on the Melting Temperature of Nano-polyhedral Grains on a Substrate, Nanotechnology, 2006, 17, p 2008–2011CrossRef G. Guisbiers and M. Wautelet, Size, Shape and Stress Effects on the Melting Temperature of Nano-polyhedral Grains on a Substrate, Nanotechnology, 2006, 17, p 2008–2011CrossRef
29.
Zurück zum Zitat J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochim. Acta, 2007, 463, p 32–40CrossRef J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochim. Acta, 2007, 463, p 32–40CrossRef
30.
Zurück zum Zitat G. Guisbiers, O. Van Overschelde, and M. Wautelet, Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films, Acta Mater., 2007, 55, p 3541–3546CrossRef G. Guisbiers, O. Van Overschelde, and M. Wautelet, Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films, Acta Mater., 2007, 55, p 3541–3546CrossRef
31.
Zurück zum Zitat O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Size-Dependent Melting of Spherical Copper Nanoparticles Embedded in a Silica Matrix, Phys. Rev. B, 2007, 75(8), p 085434CrossRef O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Size-Dependent Melting of Spherical Copper Nanoparticles Embedded in a Silica Matrix, Phys. Rev. B, 2007, 75(8), p 085434CrossRef
32.
Zurück zum Zitat P. Letellier, A. Mayaffre, and M. Turmine, Melting Point Depression of Nanosolids: Nonextensive Thermodynamics Approach, Phys. Rev. B, 2007, 76, p 045428CrossRef P. Letellier, A. Mayaffre, and M. Turmine, Melting Point Depression of Nanosolids: Nonextensive Thermodynamics Approach, Phys. Rev. B, 2007, 76, p 045428CrossRef
33.
Zurück zum Zitat Q.S. Mei and K. Lu, Melting and Superheating of Crystalline Solids: From Bulk to Nanocrystals, Prog. Mater. Sci., 2007, 52, p 1175–1262CrossRef Q.S. Mei and K. Lu, Melting and Superheating of Crystalline Solids: From Bulk to Nanocrystals, Prog. Mater. Sci., 2007, 52, p 1175–1262CrossRef
34.
Zurück zum Zitat J. Lee, T. Tanaka, J. Lee, and H. Mori, Effect of Substrates on the Melting Temperature of Gold Nanoparticles, Calphad, 2007, 31, p 105–111CrossRef J. Lee, T. Tanaka, J. Lee, and H. Mori, Effect of Substrates on the Melting Temperature of Gold Nanoparticles, Calphad, 2007, 31, p 105–111CrossRef
35.
Zurück zum Zitat K.K. Nanda, Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model, Pramana J. Phys., 2009, 172, p 617–628CrossRef K.K. Nanda, Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model, Pramana J. Phys., 2009, 172, p 617–628CrossRef
36.
Zurück zum Zitat V.I. Levitas, M. Pantoya, G. Chauhan, and I.J. Rivero, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Chem. C, 2009, 113(32), p 14088–14096CrossRef V.I. Levitas, M. Pantoya, G. Chauhan, and I.J. Rivero, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Chem. C, 2009, 113(32), p 14088–14096CrossRef
37.
Zurück zum Zitat G. Kaptay, The Extension of the Phase Rule to Nano-systems and on the Quaternary Point in One-Component Nano Phase Diagrams, J. Nanosci. Nanotechnol., 2010, 10, p 8164–8170CrossRef G. Kaptay, The Extension of the Phase Rule to Nano-systems and on the Quaternary Point in One-Component Nano Phase Diagrams, J. Nanosci. Nanotechnol., 2010, 10, p 8164–8170CrossRef
38.
Zurück zum Zitat W. Luo, L. Deng, K. Su, K. Li, G. Liao, and S. Xiao, Gibbs Free Energy Approach to Calculate the Thermodynamic Properties of Copper Nanocrystals, Phys. B, 2011, 406, p 859–863CrossRef W. Luo, L. Deng, K. Su, K. Li, G. Liao, and S. Xiao, Gibbs Free Energy Approach to Calculate the Thermodynamic Properties of Copper Nanocrystals, Phys. B, 2011, 406, p 859–863CrossRef
39.
Zurück zum Zitat V.I. Levitas and K. Samani, Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles, Nat. Commun., 2011, 2, p 284CrossRef V.I. Levitas and K. Samani, Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles, Nat. Commun., 2011, 2, p 284CrossRef
40.
Zurück zum Zitat V.I. Levitas and K. Samani, Coherent Solid/Liquid Interface with Stress Relaxation in a Phase-Field Approach to the Melting/Solidification Transition, Phys. Rev. B, 2011, 84(14), p 140103CrossRef V.I. Levitas and K. Samani, Coherent Solid/Liquid Interface with Stress Relaxation in a Phase-Field Approach to the Melting/Solidification Transition, Phys. Rev. B, 2011, 84(14), p 140103CrossRef
41.
Zurück zum Zitat G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56CrossRef G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56CrossRef
42.
Zurück zum Zitat G. Kaptay, The Gibbs Equation Versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-materials, J. Nanosci. Nanotechnol., 2012, 12(3), p 2625–2633CrossRef G. Kaptay, The Gibbs Equation Versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-materials, J. Nanosci. Nanotechnol., 2012, 12(3), p 2625–2633CrossRef
43.
Zurück zum Zitat A.I. Rusanov, The Development of the Fundamental Concepts of Surface Thermodynamics, Colloid J., 2012, 74(2), p 136–153CrossRef A.I. Rusanov, The Development of the Fundamental Concepts of Surface Thermodynamics, Colloid J., 2012, 74(2), p 136–153CrossRef
44.
Zurück zum Zitat G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems with Nano-phases and Complexions, J. Mater. Sci., 2012, 47, p 8320–8335CrossRef G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems with Nano-phases and Complexions, J. Mater. Sci., 2012, 47, p 8320–8335CrossRef
45.
Zurück zum Zitat V.I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Rev. B, 2012, 85(22), p 220104CrossRef V.I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Rev. B, 2012, 85(22), p 220104CrossRef
46.
Zurück zum Zitat J. Leitner and M. Kamrádek, Termodynamicky popis nanosystemu, Chem. Listy, 2013, 107, p 606–613 J. Leitner and M. Kamrádek, Termodynamicky popis nanosystemu, Chem. Listy, 2013, 107, p 606–613
48.
Zurück zum Zitat D.A. Firmansyah, K. Sullivan, K.S. Lee, Y.H. Kim, R. Zahaf, M.R. Zachariah, and D.J. Lee, Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles, Phys. Chem. C, 2013, 116(1), p 404–411CrossRef D.A. Firmansyah, K. Sullivan, K.S. Lee, Y.H. Kim, R. Zahaf, M.R. Zachariah, and D.J. Lee, Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles, Phys. Chem. C, 2013, 116(1), p 404–411CrossRef
49.
Zurück zum Zitat L. Wojtczak, The Melting Point of Thin Films, Phys. Status Solidi, 1967, 22, p K163–K166CrossRef L. Wojtczak, The Melting Point of Thin Films, Phys. Status Solidi, 1967, 22, p K163–K166CrossRef
50.
Zurück zum Zitat L.P.H. Jeurgens, Z. Wang, and E.J. Mittemeijer, Thermodynamics of Reactions and Phase Transformations at Interfaces and Surfaces, Int. J. Mater. Res., 2009, 100, p 1281–1307CrossRef L.P.H. Jeurgens, Z. Wang, and E.J. Mittemeijer, Thermodynamics of Reactions and Phase Transformations at Interfaces and Surfaces, Int. J. Mater. Res., 2009, 100, p 1281–1307CrossRef
51.
Zurück zum Zitat D.G. Gromov and S.A. Gavrilov, Manifestation of the Heterogeneous Mechanism Upon Melting of Low-Dimensional Systems, Phys. Solid State, 2009, 51(10), p 2135–2144CrossRef D.G. Gromov and S.A. Gavrilov, Manifestation of the Heterogeneous Mechanism Upon Melting of Low-Dimensional Systems, Phys. Solid State, 2009, 51(10), p 2135–2144CrossRef
52.
Zurück zum Zitat R.C. Tolman, The Effect of Droplet Size on Surface Tension, J. Chem. Phys., 1949, 17, p 333–337CrossRef R.C. Tolman, The Effect of Droplet Size on Surface Tension, J. Chem. Phys., 1949, 17, p 333–337CrossRef
53.
Zurück zum Zitat M.W. Chase (Ed.), Janaf, Thermochemical Tables, 3rd ed., J. Phys. Chem. Data, 1985, 14(Suppl 1) M.W. Chase (Ed.), Janaf, Thermochemical Tables, 3rd ed., J. Phys. Chem. Data, 1985, 14(Suppl 1)
54.
Zurück zum Zitat J. Emsley, The Elements, Clarendon Press, Oxford, 1989 J. Emsley, The Elements, Clarendon Press, Oxford, 1989
55.
Zurück zum Zitat Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion, IFI/Plenum, New York, 1977CrossRef Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion, IFI/Plenum, New York, 1977CrossRef
56.
Zurück zum Zitat T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993 T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993
57.
Zurück zum Zitat G. Kaptay, A Unified Model for the Cohesive Enthalpy, Critical Temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of bcc, fcc and hcp Crystals, Mater. Sci. Eng. A, 2008, 495, p 19–26CrossRef G. Kaptay, A Unified Model for the Cohesive Enthalpy, Critical Temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of bcc, fcc and hcp Crystals, Mater. Sci. Eng. A, 2008, 495, p 19–26CrossRef
58.
Zurück zum Zitat I. Barin, Thermochemical Properties of Pure Substances, vols 1, 2, VCH, Weinheim, 1993 I. Barin, Thermochemical Properties of Pure Substances, vols 1, 2, VCH, Weinheim, 1993
59.
Zurück zum Zitat H.M. Ledbetter and E.R. Naimon, Elastic Properties of Metals and Alloys. II. Copper, J. Phys. Chem. Ref. Data, 1974, 3(4), p 897–934CrossRef H.M. Ledbetter and E.R. Naimon, Elastic Properties of Metals and Alloys. II. Copper, J. Phys. Chem. Ref. Data, 1974, 3(4), p 897–934CrossRef
60.
Zurück zum Zitat D. Gerlich, S.L. Dole, and G.A. Slack, Elastic Properties of Aluminum Nitride, J. Phys. Chem. Solids, 1986, 47(5), p 437–441CrossRef D. Gerlich, S.L. Dole, and G.A. Slack, Elastic Properties of Aluminum Nitride, J. Phys. Chem. Solids, 1986, 47(5), p 437–441CrossRef
61.
Zurück zum Zitat N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Amsterdam, 1999 N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Amsterdam, 1999
62.
Zurück zum Zitat G. Kaptay, E. Báder, and L. Bolyán, Interfacial Forces and Energies Relevant to Production of Metal Matrix Composites, Mater. Sci. Forum, 2000, 329–330, p 151–156CrossRef G. Kaptay, E. Báder, and L. Bolyán, Interfacial Forces and Energies Relevant to Production of Metal Matrix Composites, Mater. Sci. Forum, 2000, 329–330, p 151–156CrossRef
Metadaten
Titel
Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations
verfasst von
G. Kaptay
J. Janczak-Rusch
G. Pigozzi
L. P. H. Jeurgens
Publikationsdatum
01.05.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-0885-z

Weitere Artikel der Ausgabe 5/2014

Journal of Materials Engineering and Performance 5/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.